首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   75篇
  国内免费   15篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   23篇
  2019年   22篇
  2018年   22篇
  2017年   13篇
  2016年   23篇
  2015年   21篇
  2014年   31篇
  2013年   27篇
  2012年   11篇
  2011年   17篇
  2010年   14篇
  2009年   11篇
  2008年   17篇
  2007年   15篇
  2006年   11篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   18篇
  1999年   11篇
  1998年   3篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   12篇
  1993年   4篇
  1992年   7篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有481条查询结果,搜索用时 31 毫秒
151.
The general morphology, surface sculpturing, and exine ultrastructure have been studied in dispersed monosulcate pollen from the Early Cretaceous of Transbaikalia, Russia. The pollen grains dominate the palynological assemblage extracted from coal deposits of the Khilok Formation in the Buryat Republic, which also contain ginkgoalean leaves of Baierella averianovii as the only constituent of the assemblage of plant megafossils. The relationship between the pollen grains and ginkgoalean leaves from this autochthonous burial is hypothesised on the basis of taphonomical analysis and palaeobiogeographical data. It is shown that the ectexine of the pollen grains includes a thick solid tectum, a thin granular infratectum and a thin foot layer; the endexine is fine-grained, slightly more electron-dense than the ectexine, and is preserved only in places. The distal aperture is formed by a thinning of the exine. No analogous ultrastructure has been described so far in fossil pollen grains of this morphotype studied ultrastructurally from in situ material. For comparison, we also studied the exine ultrastructure of pollen grains Ginkgo biloba. The fossil pollen is not identical to pollen of extant G. biloba, but shows several significant similarities in the exine ultrastructure, which does not contradict the presumable ginkgoalean affinity of the fossil pollen.  相似文献   
152.

This investigation aimed to characterise conditioning layers formed on AISI 316 stainless steel by different types of extracellular polymeric substances (EPS), i.e. biofilm, planktonic and capsular exopolymers, isolated from continuous cultures of marine Pseudomonas received from the National Collection of Industrial and Marine Bacteria (strain NCIMB 2021). Colorimetric assays and gas chromatography‐mass spectrometry analysis confirmed previously obtained results based on a FTIR and SDS‐PAGE study of Pseudomonas NCIMB 2021 EPS demonstrating the presence of protein, neutral and amino sugars and uronic acids. The content and the ratio of these macromolecules differed depending on the type of EPS. X‐ray photoelectron spectroscopy revealed that conditioning layers formed upon exposure of steel to EPS solutions were chemically dissimilar. It is proposed that the observed difference in the chemistry of conditioning layers is the likely reason for reported differences in attachment of Pseudomonas cells to EPS‐conditioned steel surfaces.  相似文献   
153.
Organic p‐type materials are potential candidates as solution processable hole transport materials (HTMs) for colloidal quantum dot solar cells (CQDSCs) because of their good hole accepting/electron blocking characteristics and synthetic versatility. However, organic HTMs have still demonstrated inferior performance compared to conventional p‐type CQD HTMs. In this work, organic π‐conjugated polymer (π‐CP) based HTMs, which can achieve performance superior to that of state‐of‐the‐art HTM, p‐type CQDs, are developed. The molecular engineering of the π‐CPs alters their optoelectronic properties, and the charge generation and collection in CQDSCs using them are substantially improved. A device using PBDTTPD‐HT achieves power conversion efficiency (PCE) of 11.53% with decent air‐storage stability. This is the highest reported PCE among CQDSCs using organic HTMs, and even higher than the reported best solid‐state ligand exchange‐free CQDSC using pCQD‐HTM. From the viewpoint of device processing, device fabrication does not require any solid‐state ligand exchange step or layer‐by‐layer deposition process, which is favorable for exploiting commercial processing techniques.  相似文献   
154.
Electrode stabilization by surface passivation has been explored as the most crucial step to develop long‐cycle lithium‐ion batteries (LIBs). In this work, functionally graded materials consisting of “conversion‐type” iron‐doped nickel oxyfluoride (NiFeOF) cathode covered with a homologous passivation layer (HPL) are rationally designed for long‐cycle LIBs. The compact and fluorine‐rich HPL plays dual roles in suppressing the volume change of NiFeOF porous cathode and minimizing the dissolution of transition metals during LIBs cycling by forming a structure/composition gradient. The structure and composition of HPL reconstructs during lithiation/delithiation, buffering the volume change and trapping the dissolved transition metals. As a result, a high capacity of 175 mAh g?1 (equal to an outstanding volumetric capacity of 936 Ah L?1) with a greatly reduced capacity decay rate of 0.012% per cycle for 1000 cycles is achieved, which is superior to the NiFeOF porous film without HPL and commercially available NiF2‐FeF3 powders. The proposed chemical and structure reconstruction mechanism of HPL opens a new avenue for the novel materials development for long‐cycle LIBs.  相似文献   
155.
156.
Human pluripotent stem cells (hPSCs) have the distinct advantage of being able to differentiate into cells of all three germ layers. Target cells or tissues derived from hPSCs have many uses such as drug screening, disease modeling, and transplantation therapy. There are currently a wide variety of differentiation methods available. However, most of the existing differentiation methods are unreliable, with uneven differentiation efficiency and poor reproducibility. At the same time, it is difficult to choose the optimal method when faced with so many differentiation schemes, and it is time-consuming and costly to explore a new differentiation approach. Thus, it is critical to design a robust and efficient method of differentiation. In this review article, we summarize a comprehensive approach in which hPSCs are differentiated into target cells or organoids including brain, liver, blood, melanocytes, and mesenchymal cells. This was accomplished by employing an embryoid body-based three-dimensional (3D) suspension culture system with multiple cells co-cultured. The method has high stable differentiation efficiency compared to the conventional 2D culture and can meet the requirements of clinical application. Additionally, ex vivo co-culture models might be able to constitute organoids that are highly similar or mimic human organs for potential organ transplantation in the future.  相似文献   
157.
The leaves, flower and stems of the southern African angiosperm resurrection plant Myrothamnus flabellifolia were investigated at the ultrastructural level to determine the source of previously reported fungal contamination. Fungal mycelia and hyphae of the genera Aspergillus and Penicillium were found localized to the hydathodes of the leaves and stigmatic surfaces of the female flowers in both desiccated and hydrated specimens. A waxy bacterium of the genus Bacillus was found to colonise the waxy epidermal surfaces of the leaves and flowers which was also where fungal cells were found to be absent. It is suggested that the wax like deposits within the leaves and stems as well as over the epidermal surface prevent the growth of the fungal organisms. These fungi opportunistically invade moist surfaces, such as the floral stigmas, during periods of moisture availability and may thus negatively impact plant development.  相似文献   
158.
Morphology and exine ultrastructure of pollen grains of Triassic peltasperms have been studied for the first time. Pollen grains of Antevsia zeilleri from the Rhaetian of Germany are of the Cycadopites-type and monosulcate; the sculpturing is the same in the apertural and non-apertural areas. The proximal exine includes a row of lacunae covered by a solid, thick tectum and underlined by a foot layer. Pillars are hanging from the tectum between the lacunae. The exine is thinning to a homogeneous layer in the apertural region. The latter is bordered by thicker alveolate areas of the exine, in places resembling a saccus-like ultrastructure. The endexine includes white-line-centred lamellae. The exine ultrastructure is compared with that of pollen of Permian peltasperms. Although pollen types ascribed to Permian peltasperms are completely different in their general morphology, a transformation can be hypothesized by ultrastructural data from Permian Vesicaspora into Triassic Cycadopites extracted from pollen sacs of Antevsia. Comparison with Cycadopites of non-peltaspermalean (Ginkgoalean, Cycadophyte) and unknown affinities has been accomplished. The exine ultrastructure is distinctive enough to differentiate among peltaspermalean, cycadalean and bennettitalean Cycadopites; some ultrastructural features are shared with pollen of modern Ginkgo biloba. More ultrastructural data are needed as well as numerous sections of pollen grains are necessary to reveal original unchanged ultrastructure.  相似文献   
159.
Effects of warming on root morphology, root mass distribution and microbial activity were studied in organic and mineral soil layers in two alpine ecosystems over>10 yr, using open-top chambers, in Swedish Lapland. Root mass was estimated using soil cores. Washed roots were scanned and sorted into four diameter classes, for which variables including root mass (g dry matter (g DM) m(-2)), root length density (RLD; cm cm(-3) soil), specific root length (SRL; m g DM(-1)), specific root area (SRA; m2 kg DM(-1)), and number of root tips m(-2) were determined. Nitrification (NEA) and denitrification enzyme activity (DEA) in the top 10 cm of soil were measured. Soil warming shifted the rooting zone towards the upper soil organic layer in both plant communities. In the dry heath, warming increased SRL and SRA of the finest roots in both soil layers, whereas the dry meadow was unaffected. Neither NEA nor DEA exhibited differences attributable to warming. Tundra plants may respond to climate change by altering their root morphology and mass while microbial activity may be unaffected. This suggests that carbon may be incorporated in tundra soils partly as a result of increases in the mass of the finer roots if temperatures rise.  相似文献   
160.
Crystalline bacterial cell surface layers (S-layers) have been identified in a great number of different species of bacteria and represent an almost universal feature of archaea. Isolated native S-layer proteins and S-layer fusion proteins incorporating functional sequences self-assemble into monomolecular crystalline arrays in suspension, on a great variety of solid substrates and on various lipid structures including planar membranes and liposomes. S-layers have proven to be particularly suited as building blocks and patterning elements in a biomolecular construction kit involving all major classes of biological molecules (proteins, lipids, glycans, nucleic acids and combinations of them) enabling innovative approaches for the controlled 'bottom-up' assembly of functional supramolecular structures and devices. Here, we review the basic principles of S-layer proteins and the application potential of S-layers in nanobiotechnology and biomimetics including life and nonlife sciences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号