全文获取类型
收费全文 | 144篇 |
免费 | 5篇 |
国内免费 | 3篇 |
专业分类
152篇 |
出版年
2024年 | 1篇 |
2023年 | 6篇 |
2022年 | 3篇 |
2021年 | 10篇 |
2020年 | 8篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 4篇 |
2016年 | 5篇 |
2014年 | 4篇 |
2013年 | 12篇 |
2012年 | 8篇 |
2011年 | 3篇 |
2010年 | 3篇 |
2009年 | 2篇 |
2008年 | 9篇 |
2007年 | 6篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 5篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1985年 | 3篇 |
1983年 | 3篇 |
1978年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有152条查询结果,搜索用时 0 毫秒
71.
《Current biology : CB》2020,30(5):788-801.e3
Media player
72.
Kira D.A. Rienecker Robert G. Poston Joshua S. Segales Isabelle W. Finholm Morgan H. Sono Sorina J. Munteanu Mina Ghaninejad-Esfahani Ayna Rejepova Susana Tejeda-Garibay Kevin Wickman Ezequiel Marron Fernandez de Velasco Stanley A. Thayer Ramendra N. Saha 《The Journal of biological chemistry》2022,298(9)
73.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP. 相似文献
74.
Modulation of learning and hippocampal, neuronal plasticity by repetitive transcranial magnetic stimulation (rTMS) 总被引:2,自引:0,他引:2
The influence of high-frequency repetitive transcranial magnetic stimulation (rTMS) on learning process in mice and on neuronal excitability of the hippocampal tissue obtained from stimulated animals were investigated. While the stimulation with rTMS at higher frequency (15 Hz) improved animals' performance in novel object recognition test (NOR), lower frequency (1 and 8 Hz) impaired the memory. The effect was observed when evaluated immediately after rTMS exposure and declined with time. In parallel to the results of behavioral test, there was a significant enhancement of the synaptic efficiency expressed as of the long-term potentiation (LTP) recorded from hippocampal slices prepared from the animals exposed to 15 Hz rTMS. The stimulation with 1 and 8 Hz had no influence on the magnitude of LTP. Our results demonstrate that rTMS modifies mechanisms involved in memory formation. The effects of rTMS in vivo are preserved and expressed in the hippocampus tested in vitro. 相似文献
75.
经颅磁刺激在大脑皮质研究中的应用和进展 总被引:4,自引:0,他引:4
经颅磁刺激(TMS)是一种能够在脑中感应聚焦电流,瞬间调制大脑皮质的无创方法,在临床研究、基础神经学和诊治疾病等方面有许多应用。通过记录运动皮质诱发电位(MEPs),TMS已经或将成为探测脑下运动路径传导、评价皮质兴奋性、皮质映射和研究皮质塑性的常规工具。TMS能够主动干预脑功能,这种特性使它成为研究正常人脑-行为关系的独特技术,可以建立脑活动与任务完成之间的因果关系,探索脑功能连接。近年来的许多实验又表明,TMS在运动紊乱和精神疾病方面有潜在的治疗作用,但达到临床应用还有一定距离。 相似文献
76.
77.
The fundamental mechanisms of functioning of the potassium channels (molecular structures providing the potassium current through the plasma membrane) are discussed in the review. These channels have been identified in practically all types of cells of prokaryotes and eukaryotes; they are involved in a number of crucially important vital processes.Neirofiziologiya/Neurophysiology, Vol. 36, No. 4, pp. 322–329, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date. 相似文献
78.
The study of experience-dependent plasticity has been dominated by questions of how Hebbian plasticity mechanisms act during learning and development. This is unsurprising as Hebbian plasticity constitutes the most fully developed and influential model of how information is stored in neural circuits and how neural circuitry can develop without extensive genetic instructions. Yet Hebbian plasticity may not be sufficient for understanding either learning or development: the dramatic changes in synapse number and strength that can be produced by this kind of plasticity tend to threaten the stability of neural circuits. Recent work has suggested that, in addition to Hebbian plasticity, homeostatic regulatory mechanisms are active in a variety of preparations. These mechanisms alter both the synaptic connections between neurons and the intrinsic electrical properties of individual neurons, in such a way as to maintain some constancy in neuronal properties despite the changes wrought by Hebbian mechanisms. Here we review the evidence for homeostatic plasticity in the central nervous system, with special emphasis on results from cortical preparations. 相似文献
79.
Background
A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as ‘the most wonderful plants in the world’. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features.Scope
This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory.Conclusions
Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory. 相似文献80.