首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8291篇
  免费   718篇
  国内免费   580篇
  2024年   19篇
  2023年   153篇
  2022年   165篇
  2021年   233篇
  2020年   247篇
  2019年   315篇
  2018年   306篇
  2017年   251篇
  2016年   273篇
  2015年   272篇
  2014年   394篇
  2013年   534篇
  2012年   260篇
  2011年   373篇
  2010年   284篇
  2009年   365篇
  2008年   426篇
  2007年   423篇
  2006年   351篇
  2005年   345篇
  2004年   276篇
  2003年   252篇
  2002年   207篇
  2001年   177篇
  2000年   176篇
  1999年   177篇
  1998年   129篇
  1997年   183篇
  1996年   146篇
  1995年   140篇
  1994年   142篇
  1993年   141篇
  1992年   123篇
  1991年   111篇
  1990年   117篇
  1989年   101篇
  1988年   100篇
  1987年   84篇
  1986年   85篇
  1985年   93篇
  1984年   137篇
  1983年   95篇
  1982年   101篇
  1981年   91篇
  1980年   81篇
  1979年   56篇
  1978年   24篇
  1977年   14篇
  1976年   10篇
  1973年   11篇
排序方式: 共有9589条查询结果,搜索用时 109 毫秒
71.
CO2 exchange between the atmosphere and soil algal crusts of the Trachypogon savannas of the Orinoco Llanos has been analyzed using an open gas exchange system. These savannas encompass a wide range of physiognomic types, from herbaceous communities to savanna woodlands. A maximum CO2 flux of 0.207 mg m-2 s-1 was measured in the crusts of the Guanipa savannas, while in the other examined crusts (0.035–0.105 mg m-2 s-1) the flux was similar to values reported for terrestrial algae. The CO2 flux data were statistically fitted to the photosynthetically active radiation by a logarithmic relationship, and the photosynthetic efficiencies of the crusts were compared. The activation energy calculated for the CO2 fixation indicates that limitations by diffusion and photochemical processes were excluded in the Guanipa crusts (above 12 kcal mole-1), whereas they were evident in the other crust studied. An optimum CO2 incorporation as a function of the crust water potential was established and carbon gain strategies were proposed on the basis of the results and characteristics of the habitats.  相似文献   
72.
Oscillations in the rate of photosynthesis of sunflower (Helianthus annuus L.) leaves were induced by subjecting leaves, whose photosynthetic apparatus had been activated, to a sudden transition from darkness or low light to high-intensity illumination, or by transfering them in the light from air to an atmosphere containing saturating CO2. It was found that at the first maximum, light-and CO2-saturated photosynthesis can be much faster than steady-state photosynthesis. Both QA in the reaction center of PS II and P700 in the reaction center of PS I of the chloroplast electron-transport chain were more oxidized during the maxima of photosynthesis than during the minima. Maxima of P700 oxidation slightly preceded maxima in photosynthesis. During a transition from low to high irradiance, the assimilatory force FA, which was calculated from ratios of dihydroxyacetone phosphate to phosphoglycerate under the assumption that the reactions catalyzed by NADP-dependent glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase are close to equilibrium, oscillated in parallel with photosynthesis. However, only one of its components, the calculated phosphorylation potential (ATP)/(ADP)(Pi), paralleled photosynthesis, whereas calculated NADPH/NADP ratios exhibited antiparallel behaviour. When photosynthetic oscillations were initiated by a transition from low to high CO2, the assimilatory force FA declined, was very low at the first minimum of photosynthesis and increased as photosynthesis rose to its second maximum. The observations indicate that the minima in photosynthesis are caused by lack of ATP. This leads to overreduction of the electron-transport chain which is indicated by the reduction of P700. During photosynthetic oscillations the chloroplast thylakoid system is unable to adjust the supply of ATP and NADPH rapidly to demand at the stoichiometric relationship required by the carbonreduction cycle.Abbreviations PGA 3-phosphoglycerate - DHAP dihydroxyacetone phosphate - P700 electron-donor pigment in the reaction enter of PS I - QA quinone acceptor in the reaction center of PS II This work received support from the Estonian Academy of Sciences, the Bavarian Ministry of Science and Art and the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful for criticism by D.A. Walker, Robert Hill Institute, University of Sheffield, U.K. and by Mark Stitt, Institute of Botany, University of Heidelberg, FRG.  相似文献   
73.
74.
During studies to optimize production of morphogenic callus from cultured leaf discs of sugarbeet (Beta vulgaris L.) large differences were observed associated with the gelling agent employed. Water availability, as determined mainly by gel matric potential, was found to be the dominant factor. A simple method was devised to measure the relative matric potential of different gels. A precisely moistened filter-paper disc was placed on the gel surface, allowed to equilibrate, removed and weighed. The relative gain or loss of water from the paper disc was a measure of the matric potential of the gel and varied with both gel type and concentration. Leaf disc expansion and production of callus-derived embryos and shoots were shown to be directly proportional to gel matric potential. Water availability may also be affected by the ease with which liquid is expressed from gels in response to localized pressure caused by explant expansion and contortion. This property, called gel expressibility, was easily measured with a weight and capillary pipette and shown also to vary with gel type and concentration. Validity of the technique for measuring relative matric potential was verified physiologically by culturing leaf discs on filter-paper overlays to eliminate expressibility differences among gels. Additionally, comparison of leaf disc growth on uncovered gel surfaces versus filter-paper overlays demonstrated the contribution of liquid expression to overall water availability. Expression of liquid by explants on uncovered gel surfaces greatly enhanced the production of morphogenic callus.  相似文献   
75.
在猫和家兔大脑半球一侧视区17/18交界处施加γ—氨基丁酸(GABA)、荷包牡丹碱和L—谷氨酸钠,以及用氯化钾和冷冻阻遏的方法,记录对侧和同侧皮层相应处图形视觉诱发电位(PVEP)的变化。讨论了GABA、荷包牡丹碱和L—谷氨酸钠对猫和兔的对侧和同侧PVEP的影响。  相似文献   
76.
The fluorescence of the voltage sensitive dye, diS-C3-(5), has been analyzed by means of synchronous excitation spectroscopy. Using this rather rare fluorescence technique we have been able to distinguish between the slightly shifted spectra of diS-C3-(5) fluorescence from cells and from the supernatant. It has been found that diS-C3-(5) fluorescence in the supernatant can be selectively monitored at exc = 630 nm and em= 650 nm, while the cell associated fluorescence can be observed at exc= 690 nm and em = 710 nm. A modified theory for the diSC3-(5) fluorescence response to the membrane potential is presented, according to which a linear relationship exists between the logarithmic increment of the dye fluorescence intensity in the supernatant, In I/I°, and the underlying change in the plasma membrane potential, p=pp. The theory has been tested on human myeloid leukemia cells (line ML-1) in which membrane potential changes were induced by valinomycin clamping in various K+ gradients. It has been demonstrated that the membrane potential change, p,can be measured on an absolute scale. Offprint requests to: J. Plasek  相似文献   
77.
The energy status of mammalian cells is a finely regulated phenomenon. This is especially true in cardiac muscle cells in which energy requirements are high and the system must provide rapid turnover of the adenine nucleotides and instant response to changes in energetic demands. We have examined the acute response of the rat myocardium to ventricular pacing up to 2.5 times the resting heart rate. The purpose of this study was to determine at what level of pacing the normal energy status could be maintained and at what point it was compromised. Myocardial energy charge (EC = (ATP + 0.5 ADP)/(ATP + ADP + AMP)) was maintained at 1, 1.5 and 2 times the resting heart rate but declined significantly at 2.5 times. In contrast, phosphorylation potential (PP = ATP/ADP1 × Pi) was drastically altered in hearts paced at 1.5, 2 and 2.5 times the resting rate. Tissue lactate increased and glycogen decreased in a linear fashion as pacing rate increased, indicating that the metabolic challenge was proportional to the pacing rate. EC seems to reflect the overall status of the cell and its ability to maintain a dynamic equilibrium. PP may reflect the immediate and necessary driving force for mitochondrial respiration in times of increased demand. These data suggest that the myocardium may meet the increased energy demands of acute ventricular pacing by shifting the molar ratio of ATP to ADP times Pi in favour of driving phosphorylation.  相似文献   
78.
Glucose-limited, continuous cultures (dilution rate 0.1 h-1) of Streptococcus bovis JB1 fermented glucose at a rate of 3.9 mol mg protein-1 h-1 and produced acctate, formate and ethanol. Based on a maximum ATP yield of 32 cells/mol ATP (Stouthamer 1973) and 3 ATP/glucose, the theoretical glucose consumption for growth would have been 2.1 mol mg protein-1 h-1. Because the maintenance energy requirement was 1.7 mol/mg protein/h (Russell and Baldwin 1979), virtually all of the glucose consumption could be explained by growth and maintenance and the YATP was 30. Glucose-limited, continuous cultures produced heat at a rate of 0.29 mW/mg protein, and this value was similar to the enthalpy change of the fermentation (0.32 mW/mg protein). Batch cultures (specific growth rate 2.0 h-1) fermented glucose at a rate of 81 mol mg protein-1 h-1, and produced only lactate. The heat production was in close agreement with the theoretical enthalpy change (1.72 versus 1.70 mW/mg protein), but only 80% of the glucose consumption could be accounted by growth and maintenance. The YATP of the batch cultures was 25. Nitrogen-limited, glucose-excess, non-growing cultures fermented glucose at a rate of 6.9 mol mg protein-1 h-1, and virtually all of the enthalpy for this homolactic fermentation could be accounted as heat (0.17 mW/mg protein). The nitrogenlimited cultures had a membrane potential of 150 mV, and nearly all of the heat production could be explained by a futile cycle of protons through the cell membrane (watts = amperes x voltage where H+/ATP was 3). The membrane voltage of the nitrogen-limited cells was higher than the glucose-limited continuous cultures (150 versus 80 mV), and this difference in voltage explained why nitrogen-limited cultures consumed glucose faster than the maintenance rate. Batch cultures had a membrane potential of 100 mV, and this voltage could not account for increased glucose consumption (more than growth plus maintenance). It appears that another mechanism causes the increased heat production and lower growth efficiency of batch cultures.  相似文献   
79.
The effect of membrane potential on the activity of the ATP-dependent Ca2+ pump of isolated canine ventricular sarcolemmal vesicles were investigated. The membrane potential was controlled by the intravesicular and extravesicular concentration of K+, and the initial rates of Ca2+ uptake both in the presence and the absence of valinomycin were determined. The rate of Ca2+ uptake was stimulated by a inside-negative potential induced in the presence of valinomycin. The valinomycin-dependent stimulation was enhanced by the addition of K+ channel blocker, tetraethylammonium ion or Ba2+. The electrogenicity of cardiac sarcolemmal ATP-dependent Ca2+ pump is suggested from the increase of Ca2+ uptake by negative potential induced by valinomycin.  相似文献   
80.
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to ΔpH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 μM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 μM) and partially purified F1-ATPase (Ki = 177 μM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 μM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. Δψ-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of Δψ in isolated mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号