全文获取类型
收费全文 | 2712篇 |
免费 | 342篇 |
国内免费 | 105篇 |
专业分类
3159篇 |
出版年
2024年 | 5篇 |
2023年 | 80篇 |
2022年 | 74篇 |
2021年 | 123篇 |
2020年 | 117篇 |
2019年 | 152篇 |
2018年 | 107篇 |
2017年 | 104篇 |
2016年 | 125篇 |
2015年 | 132篇 |
2014年 | 153篇 |
2013年 | 190篇 |
2012年 | 124篇 |
2011年 | 123篇 |
2010年 | 89篇 |
2009年 | 126篇 |
2008年 | 137篇 |
2007年 | 125篇 |
2006年 | 114篇 |
2005年 | 116篇 |
2004年 | 85篇 |
2003年 | 91篇 |
2002年 | 68篇 |
2001年 | 66篇 |
2000年 | 55篇 |
1999年 | 51篇 |
1998年 | 31篇 |
1997年 | 58篇 |
1996年 | 46篇 |
1995年 | 32篇 |
1994年 | 26篇 |
1993年 | 36篇 |
1992年 | 29篇 |
1991年 | 11篇 |
1990年 | 19篇 |
1989年 | 19篇 |
1988年 | 14篇 |
1987年 | 18篇 |
1986年 | 15篇 |
1985年 | 3篇 |
1984年 | 16篇 |
1983年 | 4篇 |
1982年 | 7篇 |
1981年 | 11篇 |
1980年 | 9篇 |
1978年 | 8篇 |
1977年 | 2篇 |
1976年 | 3篇 |
1974年 | 3篇 |
1972年 | 3篇 |
排序方式: 共有3159条查询结果,搜索用时 27 毫秒
71.
David T. Parkin 《Bird Study》2013,60(3):223-242
Capsule Based on the 1999 Witherby Memorial Lecture – reviews how developments in molecular and population genetics have led to a reappraisal of species limits in birds. The taxonomy of birds of the West Palearctic has moved from the comparative stability of the ‘Voous List’ into a period of serious activity, with new data emerging in almost every issue of every evolutionary and avian journal! This activity comes from two directions. Firstly, developments in population genetics, molecular biology, acoustics, behaviour and distributional studies have opened new avenues to measuring differentiation among groups of birds. This, in turn, has led to the recognition that earlier views of what constitutes a ‘species’ are in need of modification (‘improvement’), and the emergence of the ‘lineage concept’ of species. I review some of the species concepts most relevant to avian studies, and attempt to show how and why this change has happened, and its consequences for taxonomy and species limits. Examples are given in the form of ‘case studies’, and include Carrion/Hooded Crows Corvus corone/cornix, Green-winged/Eurasian Teals Anas carolinensis/crecca and Phylloscopus warblers. 相似文献
72.
The genes were cloned for the two apoprotein subunits, and ,of phycocyanin from the cyanobacterium Spirulina maxima = Arthrospiramaxima) strain F3. The - and -subunit gene-coding regionscontain 489 bp and 519 bp, respectively. The -subunit gene is upstreamfrom the -subunit gene, with a 111-bp segment separating them.Similarities between the -subunits of S. maxima and nine othercyanobacteria were between 58% and 99%, as were those between the -subunits. The maximum similarity between the - and -subunits from S. maxima was 27%. 相似文献
73.
Didier Casane Patrick Laurenti 《BioEssays : news and reviews in molecular, cellular and developmental biology》2013,35(4):332-338
A series of recent studies on extant coelacanths has emphasised the slow rate of molecular and morphological evolution in these species. These studies were based on the assumption that a coelacanth is a ‘living fossil’ that has shown little morphological change since the Devonian, and they proposed a causal link between low molecular evolutionary rate and morphological stasis. Here, we have examined the available molecular and morphological data and show that: (i) low intra‐specific molecular diversity does not imply low mutation rate, (ii) studies not showing low substitution rates in coelacanth are often neglected, (iii) the morphological stability of coelacanths is not supported by paleontological evidence. We recall that intra‐species levels of molecular diversity, inter‐species genome divergence rates and morphological divergence rates are under different constraints and they are not necessarily correlated. Finally, we emphasise that concepts such as ‘living fossil’, ‘basal lineage’, or ‘primitive extant species’ do not make sense from a tree‐thinking perspective. Editor's suggested further reading in BioEssays Tree thinking for all biology: the problem with reading phylogenies as ladders of progress Abstract 相似文献
74.
Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems. 相似文献
75.
Rates of trait evolution are known to vary across phylogenies; however, standard evolutionary models assume a homogeneous process of trait change. These simple methods are widely applied in small‐scale phylogenetic studies, whereas models of rate heterogeneity are not, so the prevalence and patterns of potential rate variation in groups up to hundreds of species remain unclear. The extent to which trait evolution is modelled accurately on a given phylogeny is also largely unknown because studies typically lack absolute model fit tests. We investigated these issues by applying both rate‐static and variable‐rates methods on (i) body mass data for 88 avian clades of 10–318 species, and (ii) data simulated under a range of rate‐heterogeneity scenarios. Our results show that rate heterogeneity is present across small‐scaled avian clades, and consequently applying only standard single‐process models prompts inaccurate inferences about the generating evolutionary process. Specifically, these approaches underestimate rate variation, and systematically mislabel temporal trends in trait evolution. Conversely, variable‐rates approaches have superior relative fit (they are the best model) and absolute fit (they describe the data well). We show that rate changes such as single internal branch variations, rate decreases and early bursts are hard to detect, even by variable‐rates models. We also use recently developed absolute adequacy tests to highlight misleading conclusions based on relative fit alone (e.g. a consistent preference for constrained evolution when isolated terminal branch rate increases are present). This work highlights the potential for robust inferences about trait evolution when fitting flexible models in conjunction with tests for absolute model fit. 相似文献
76.
Gerda Saxer Michael Travisano 《Evolution; international journal of organic evolution》2016,70(1):98-110
Adaptive radiations are major contributors to species diversity. Although the underlying mechanisms of adaptive radiations, specialization and trade‐offs, are relatively well understood, the tempo and repeatability of adaptive radiations remain elusive. Ecological specialization can occur through the expansion into novel niches or through partitioning of an existing niche. To test how the mode of resource specialization affects the tempo and repeatability of adaptive radiations, we selected replicate bacterial populations in environments that promoted the evolution of diversity either through niche expansion or through niche partitioning, and in a third low‐quality single‐resource environment, in which diversity was not expected to evolve. Colony size diversity evolved equally fast in environments that provided ecological opportunities regardless of the mode of resource specialization. In the low‐quality environments, diversity did not consistently evolve. We observed the largest fitness improvement in the low‐quality environment and the smallest the glucose‐limited environment. We did not observe a change in the rate of evolutionary change in either trait or environment, suggesting that the pool of beneficial mutations was not exhausted. Overall, the mode of resource specialization did not affect the tempo or repeatability of adaptive radiations. These results demonstrate the limitations of eco‐evolutionary feedbacks to affect evolutionary outcomes. 相似文献
77.
A core eco‐evolutionary aim is to better understand the factors driving the diversification of functions in ecosystems. Using phylogenetic, trophic, and functional information, we tested whether trophic habits (i.e. feeding guilds) affect lineage and functional diversification in two major radiations of reef fishes. Our results from wrasses (Labridae) and damselfishes (Pomacentridae) do not fully support the ‘dead‐end’ hypothesis that specialisation leads to reduce speciation rates because the tempo of lineage diversification did not substantially vary among guilds in both fish families. Our findings also demonstrate a tight relationship between trophic habits and functional roles held by fish in reef ecosystems, which is not associated with a variation in the tempo of functional diversification among guilds. By illustrating the pivotal importance of the generalist feeding strategy during the evolutionary history of reef fishes, our study emphasises the role of this feeding guild as a reservoir for future diversity. 相似文献
78.
Antonio Ballell Benjamin C. Moon Laura B. Porro Michael J. Benton Emily J. Rayfield 《Palaeontology》2019,62(6):867-887
During the Mesozoic, Crocodylomorpha had a much higher taxonomic and morphological diversity than today. Members of one particularly successful clade, Thalattosuchia, are well‐known for being longirostrine: having long, slender snouts. It has generally been assumed that Thalattosuchia owed their success in part to the evolution of longirostry, leading to a feeding ecology similar to that of the living Indian gharial, Gavialis. Here, we compare form and function of the skulls of the thalattosuchian Pelagosaurus and Gavialis using digital reconstructions of the skull musculoskeletal anatomy and finite element models to show that they had different jaw muscle arrangements and biomechanical behaviour. Additionally, the relevance of feeding‐related mandibular traits linked to longirostry in the radiation of crocodylomorph clades was investigated by conducting an evolutionary rates analysis under the variable rates model. We find that, even though Pelagosaurus and Gavialis share similar patterns of stress distribution in their skulls, the former had lower mechanical resistance. This suggests that compared to Gavialis, Pelagosaurus was unable to process large, mechanically less tractable prey, instead operating as a specialized piscivore that fed on softer and smaller prey. Secondly, innovation of feeding strategies was achieved by rate acceleration of functional characters of the mandible, a key mechanism for the diversification of certain clades like thalattosuchians and eusuchians. Different rates of functional evolution suggest divergent diversification dynamics between teleosaurids and metriorhynchids in the Jurassic. 相似文献
79.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association. 相似文献
80.
Most studies of behaviour examine traits whose proximate causes include sensory input and neural decision-making, but conflict and collaboration in biological systems began long before brains or sensory systems evolved. Many behaviours result from non-neural mechanisms such as direct physical contact between recognition proteins or modifications of development that coincide with altered behaviour. These simple molecular mechanisms form the basis of important biological functions and can enact organismal interactions that are as subtle, strategic and interesting as any. The genetic changes that underlie divergent molecular behaviours are often targets of selection, indicating that their functional variation has important fitness consequences. These behaviours evolve by discrete units of quantifiable phenotypic effect (amino acid and regulatory mutations, often by successive mutations of the same gene), so the role of selection in shaping evolutionary change can be evaluated on the scale at which heritable phenotypic variation originates. We describe experimental strategies for finding genes that underlie biochemical and developmental alterations of behaviour, survey the existing literature highlighting cases where the simplicity of molecular behaviours has allowed insight to the evolutionary process and discuss the utility of a genetic knowledge of the sources and spectrum of phenotypic variation for a deeper understanding of how genetic and phenotypic architectures evolve. 相似文献