首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   128篇
  国内免费   186篇
  2023年   16篇
  2022年   31篇
  2021年   37篇
  2020年   37篇
  2019年   65篇
  2018年   53篇
  2017年   46篇
  2016年   53篇
  2015年   56篇
  2014年   95篇
  2013年   216篇
  2012年   84篇
  2011年   111篇
  2010年   81篇
  2009年   119篇
  2008年   109篇
  2007年   94篇
  2006年   78篇
  2005年   87篇
  2004年   91篇
  2003年   76篇
  2002年   79篇
  2001年   43篇
  2000年   46篇
  1999年   34篇
  1998年   31篇
  1997年   35篇
  1996年   29篇
  1995年   31篇
  1994年   33篇
  1993年   25篇
  1992年   21篇
  1991年   23篇
  1990年   15篇
  1989年   15篇
  1988年   8篇
  1987年   13篇
  1986年   10篇
  1985年   23篇
  1984年   18篇
  1983年   15篇
  1982年   16篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2238条查询结果,搜索用时 15 毫秒
91.
In our study, it has been detected in vivo and in vitro that GSPE reversed high glucose-induced the increase of ICAM-1 and VCAM-1. It is shown that by western blotting detection, GSPE significantly inhibited the activation of NF-κB induced by high glucose while there was significant decrease of the expression of PKC with GSPE intervention. By adding the NF-κB blocker PDTC and the PKC inhibitor peptide 19–31(10?6 M), no significant difference was found in the levels of VCAM-1 and ICAM-1 among GSPE group, the PKC inhibitor peptide 19–31-added GSPE group and the PDTC-added GSPE group. So the conclusion could be drawn that PKC inhibition must be involved in GSPE decreasing the level of ICAM-1 and VCAM-1.We proved for the first time that GSPE prevented high glucose-induced the increase of ICAM-1 and VCAM-1 by PKC and NF-κB inhibition. These findings show a novel mechanism of the action GSPE preventing endothelial dysfunction, which may have clinical application values.  相似文献   
92.
Fructose, glucose, and mannose were treated with subcritical aqueous ethanol for ethanol concentrations ranging from 0 to 80% (v/v) at 180–200 °C. The aldose–ketose isomerization was more favorable than ketose–aldose isomerization and glucose–mannose epimerization. The isomerization of the monosaccharides was promoted by the addition of ethanol. In particular, mannose was isomerized most easily to fructose in subcritical aqueous ethanol. The apparent equilibrium constants for the isomerizations of mannose to fructose, Keq,M→F, and glucose to fructose, Keq,G→F, were independent of ethanol concentration and increased with increasing temperature. Moreover, the Keq,M→F value was much larger than the Keq,G→F value. The enthalpies for the isomerization of mannose to fructose, ΔHM→F, and glucose to fructose, ΔHG→F, were estimated to be 18 and 24 kJ/mol, respectively, according to van’t Hoff equation. Subcritical aqueous ethanol can be used to produce fructose from glucose and mannose efficiently.  相似文献   
93.
In order to elucidate the biochemical mechanism of the alkaline protease accumulation from n-paraffins by a kabicidin-resistant mutant of Fusarium sp., the cell constituents and the extracellular products of the mutant strain were compared with those of the parent strain. No prominent differences in the cell constituents were observed between the parent and the mutant. From the analysis of the extracellular products, however the mutant was found to have a high productivity of some hydrolytic enzymes, such as amylase and ribonuclease, and ergosterol which is a structural constituent of fungal cell membrane. The relationship of secretion of ergosterol, resistance to kabicidin and accumulation of alkaline protease is discussed.  相似文献   
94.
Operating the saccharification and fermentation processes at high‐substrate loadings is a key factor for making ethanol production from lignocellulosic biomass economically viable. However, increasing the substrate loading presents some disadvantages, including a higher concentration of inhibitors (furan derivatives, weak acids, and phenolic compounds) in the media, which negatively affect the fermentation performance. One strategy to eliminate soluble inhibitors is filtering and washing the pretreated material. In this study, it was observed that even if the material was previously washed, inhibitory compounds were released during the enzymatic hydrolysis step. Laccase enzymatic treatment was evaluated as a method to reduce these inhibitory effects. The laccase efficiency was analyzed in a presaccharification and simultaneous saccharification and fermentation process at high‐substrate loadings. Water‐insoluble solids fraction from steam‐exploded wheat straw was used as substrate and Saccharomyces cerevisiae as fermenting microorganism. Laccase supplementation reduced strongly the phenolic content in the media, without affecting weak acids and furan derivatives. This strategy resulted in an improved yeast performance during simultaneous saccharification and fermentation process, increasing significantly ethanol productivity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   
95.
Abstract

Downy mildew (Sclerospora graminicola [Sacc.] Schroet.) is a serious agricultural problem for pearl millet (Pennisetum glaucum [L.] R. Br.) grain production under field conditions. Six medicinally important plant species Azadirachta indica, Argemone mexicana, Commiphora caudata, Mentha piperita, Emblica officinalis and Viscum album were evaluated for their efficacy against pearl millet downy mildew. Seeds of pearl millet were treated with different concentrations of aqueous extract of the plants to examine their efficacy in controlling downy mildew. Among the plant extracts tested, V. album treatment was found to be more effective in enhancing seed quality parameters and also in inducing resistance against downy mildew disease. Germination and seedling vigor was improved in seeds treated with V. album extracts over control. Seeds treated with 10% concentration of V. album showed maximum protection against downy mildew disease under greenhouse and field conditions. The downy mildew disease protection varied from 44–70% with different concentrations. Leaf extract of V. album did not inhibit sporulation and zoospore release from sporangia of Sclerospora graminicola, indicating that the disease-controlling effect was attributed to induced resistance. Seed treatment with V. album extract increased pearl millet grain yield considerably. In V. album, treated pearl millet seedlings increased activities of peroxidase, and phenylalanine ammonia-lyase enzyme was detected. FTIR analysis of V. album extracts showed the presence of amides and other aromatic compounds which are antimicrobial compounds involved in plant defense.  相似文献   
96.
The study was conducted to evaluate the effects of dietary supplementation with different levels of two extracts, an aqueous extract of Ligustrum lucidum (AELL), and an ethanol extract of Schisandra chinensis (EESC) on growth performance, parameters of antioxidative status and spleen lymphocyte proliferation of broilers, respectively. The results showed that neither AELL nor EESC had significant effects on growth performance of broilers. However, malondialdehyde concentration in heart and liver of the broilers were significantly decreased by feeding AELL or EESC. Superoxide dismutase activity in heart, liver, and kidney of broilers were improved by feeding different dosages of AELL or EESC. In contrast, glutathione reductase activity in serum, heart and kidney of broilers was not affected by experimental treatment. In addition, spleen lymphocyte proliferation of broilers was significantly enhanced by feeding different dosages of AELL or EESC. In conclusion, the results suggested that either AELL or EESC may improve antioxidant status and immune function of broilers.  相似文献   
97.
Sweet sorghum (Sorghum bicolor (L.) Moench) is widely recognized as a highly promising biomass energy crop with particular potential to complement sugarcane production in diversified cropping systems. Agronomic assessments have led to identification of four cultivars well suited for such sugarcane‐based production systems in southern Louisiana. Sweet sorghum biofuel production systems are currently being developed, and research producing large sample numbers requiring ethanol yield assessment is anticipated. Fiber analysis approaches developed for forage evaluation appear to be useful for screening such large numbers of samples for relative ethanol yield. Chemical composition, forage fiber characteristics, digestibility, and ethanol production of sweet sorghum bagasse from the four cultivars were assessed. Measures of detergent fiber, lignin, and digestibility were highly correlated with ethanol production (P < 0.01). The best linear regression models accounted for about 80% of the variation among cultivars in ethanol production. Bagasse from the cultivar Dale produced more ethanol per gram of material than any of the other cultivars. This superior ethanol production was apparently associated with less lignin in stems of Dale. Forage evaluation measures including detergent fiber analyses, in vitro digestibility, and an in vitro gas production technique successfully identified the cultivar superior in ethanol yield indicating their usefulness for screening sweet sorghum samples for potential ethanol production in research programs generating large sample numbers from evaluations of germ plasm or agronomic treatments. These screening procedures reduce time and expense of alternatives such as hexose sugar assessment for calculating theoretical ethanol yield.  相似文献   
98.
[目的] 研究核桃壳提取液(walnut shell extracts,WSE)对单针藻Monoraphidium sp.QLZ-3生长和油脂积累的影响。[方法] 向BG-11培养基中添加不同量的WSE(培养基中保留有BG-11中全部营养成分)。[结果] 结果显示,当BG-11培养基中的WSE含量为40%时,单针藻的生物量产率及油脂产率达到(534.70±4.07)mg/(L·d)和(296.35±15.36)mg/(L·d),相比对照组分别提高了的14.82%和33.50%,蛋白质和碳水化合物含量分别有不同程度的上调和下调。与对照组相比,微藻中谷胱甘肽(glutathione,GSH)和超氧化物歧化酶(superoxide dismutase,SOD)含量与活性均上调。此外,WSE作用下,微藻对多酚的移除达到84.37%,同时上调了核酮糖1,5-二磷酸羧化酶基因(ribulose 1,5-bisphosphate carboxylase/oxygenase,rbcL)和乙酰辅酶A羧化酶(acetyl coenzyme A carboxylase,accD)基因的表达量。[结论] 研究表明,WSE联合BG-11可以提高微藻的生物量产率和油脂产率,降低微藻培养的原料成本,为核桃壳的资源化利用及微藻的工业化生产提供了一定的技术支撑。  相似文献   
99.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   
100.
The goal of this study was to produce ethanol from rice hull hydrolysates (RHHs) using Pichia stipitis strains and to optimize dilute acid hydrolysis and detoxification processes by response surface methodology (RSM). The optimized conditions were found as 127.14°C, solid:liquid ratio of 1:10.44 (w/v), acid ratio of 2.52% (w/v), and hydrolysis time of 22.01 min. At these conditions, the fermentable sugar concentration was 21.87 g/L. Additionally, the nondetoxified RHH at optimized conditions contained 865.2 mg/L phenolics, 24.06 g/L fermentable sugar, no hydroxymethylfurfural (HMF), 1.62 g/L acetate, 0.36 g/L lactate, 1.89 g/L glucose, and 13.49 g/L fructose + xylose. Furthermore, RHH was detoxified with various methods and the best procedures were found to be neutralization with CaO or charcoal treatment in terms of the reduction of inhibitory compounds as compared to nondetoxified RHH. After detoxification procedures, the content of hydrolysates consisted of 557.2 and 203.1 mg/L phenolics, 19.7 and 21.60 g/L fermentable sugar, no HMF, 0.98 and 1.39 g/L acetate, 0 and 0.04 g/L lactate, 1.13 and 1.03 g/L glucose, and 8.46 and 12.09 g/L fructose + xylose, respectively. Moreover, the base‐line mediums (control), and nondetoxified and detoxified hydrolysates were used to produce ethanol by using P. stipitis strains. The highest yields except that of base‐line mediums were achieved using neutralization (35.69 and 38.33% by P. stipitis ATCC 58784 and ATCC 58785, respectively) and charcoal (37.55% by P. stipitis ATCC 58785) detoxification methods. Results showed that the rice hull can be utilized as a good feedstock for ethanol production using P. stipitis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:872–882, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号