首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1083篇
  免费   55篇
  国内免费   29篇
  2024年   1篇
  2023年   8篇
  2022年   17篇
  2021年   24篇
  2020年   16篇
  2019年   46篇
  2018年   50篇
  2017年   24篇
  2016年   22篇
  2015年   30篇
  2014年   60篇
  2013年   95篇
  2012年   38篇
  2011年   52篇
  2010年   46篇
  2009年   44篇
  2008年   64篇
  2007年   60篇
  2006年   51篇
  2005年   36篇
  2004年   42篇
  2003年   53篇
  2002年   56篇
  2001年   28篇
  2000年   18篇
  1999年   28篇
  1998年   25篇
  1997年   26篇
  1996年   17篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   7篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
排序方式: 共有1167条查询结果,搜索用时 31 毫秒
91.
92.
Obesity and its associated complications, which can lead to the development of metabolic syndrome, are a worldwide major public health concern especially in developed countries where they have a very high prevalence. RIP140 is a nuclear coregulator with a pivotal role in controlling lipid and glucose metabolism. Genetically manipulated mice devoid of RIP140 are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Moreover, white adipocytes with targeted disruption of RIP140 express genes characteristic of brown fat including CIDEA and UCP1 while skeletal muscles show a shift in fibre type composition enriched in more oxidative fibres. Thus, RIP140 is a potential therapeutic target in metabolic disorders. In this article we will review the role of RIP140 in tissues relevant to the appearance and progression of the metabolic syndrome and discuss how the manipulation of RIP140 levels or activity might represent a therapeutic approach to combat obesity and associated metabolic disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   
93.
目的分析比格犬下丘脑-垂体-性腺轴,雌二醇β受体剪切异构体的存在情况。方法根据NCBI数据库上的比格犬雌二醇受体的基因序列,设计两对特异性引物,以比格犬的卵巢、子宫、下丘脑和垂体的总RNA为模板进行反转录,并利用两对特异性引物扩增比格犬雌二醇受体的基因,对其中的主要条带进行克隆测序。结果获得了比格犬雌二醇受体的全长cDNA序列,对主要条带进行克隆测序的结果表明,该序列是一种比格犬雌二醇受体的剪切异构体。结论比格犬雌二醇β受体剪切异构体与小鼠和人的组成有较大的不同,需要进一步系统研究。  相似文献   
94.
郭军  章双杰  汤青萍 《生命科学》2011,(10):975-979
垂体和性腺是生殖轴重要组成部分,两者之间的协同与制衡是动物维持正常生长发育的保证。性腺产生的雌激素可以反馈调控垂体神经内分泌活动。近年来,随着基因芯片和差异表达谱分析技术的发展,垂体内雌激素受体介导的基因调控网络不断取得进展,垂体生殖生理功能备受关注。通过综述雌激素及其受体在促性腺激素、催乳素、生长激素合成分泌中的调控作用,以及雌激素对垂体生长发育的影响,探讨雌激素受体通过垂体影响生殖过程,希望能为进一步研究雌激素及其受体的生殖生理作用开拓思路。  相似文献   
95.
Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10–phenanthroline)ruthenium(II)–Na2SO3–permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10–phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na2SO3 is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05–10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
96.
Our laboratory showed previously that estrogen activates ERK in neocortical cultures. To further elucidate the precise signaling sequelae that lead to estrogen-induced ERK activity, we evaluated the involvement of protein kinase C (PKC). We found that neocortical explants expressed primarily PKC gamma and PKC epsilon. Consistent with the involvement of PKC in mediating estrogen-induced ERK phosphorylation, we found that estrogen treatment induced translocation of these PKC isoforms to the plasma membrane. Importantly, inhibition of these isoforms abolished the ability of estrogen to phosphorylate ERK. While direct activation of PKC mimicked the effect of estrogen on ERK, both in pattern of activation and resulting intraneuronal distribution of ERK, PKC-induced ERK phosphorylation required the activity of MEK but not B-Raf. Collectively, these data suggest a critical role for PKC in mediating estrogen induction of ERK activation in the developing brain via a MEK-dependent but B-Raf-independent pathway.  相似文献   
97.
Discovery of estrogen receptors (ER) in the central nervous system and the ability of estrogens to modulate neural circuitry and act as neurotrophic factors, suggest a therapeutic role of this steroid. To gain better understanding of the specificity and cellular mechanisms involved in estrogen-mediated neuroprotection, a mouse hippocampal neuronal cell line (HT22) was evaluated. Earlier reports indicated this cell line was devoid of ERs. Contrary to these findings, characterization of HT22 cells using RT-PCR, immunoblot, immunocytochemical, and radioligand binding techniques revealed endogenous expression of ER. The predominant subtype appeared to be ERalpha with functional activity confirmed using an ERE-tk-luciferase assay. The ability of an ER antagonist, ICI-182780, to block the neuroprotective effects of estrogens confirmed ER was involved mechanistically in neuroprotection. In conclusion, HT22 cells express functional ERalpha or a closely related ER enabling this cell line to be used to profile estrogens for neuroprotective properties acting via an ER-dependent mechanism.  相似文献   
98.
Excessive activation of the hormone signaling pathways is implicated in several disorders of the target tissues, with cancer being one of the most serious fallouts. Steroid hormone receptors are key proteins through which steroid hormones convey their signals to the cells. Deregulated activity of the hormone receptors due to their altered activation; stability or sub-cellular localization is heavily implicated in the onset and progress of cancers. The role played by estrogen and its receptors in breast cancer remains the most thoroughly investigated steroid-dependent cancer system till date. Choosing it as an example, we have summarized the molecular mechanisms underlying the action of the estrogen receptors (ERs) in manifesting the effects of the estrogens in the cells. A special emphasis is placed on the molecular mechanism of their functionality, role of the coactivator proteins, and the reasons for the deregulated signaling. The therapeutic approaches resulting from the mechanistic study of the ER action and their efficacies are also discussed.  相似文献   
99.
Glucocorticoid-induced osteoporosis may be at least in part due to the increased apoptosis of osteocytes. To study the role of osteocyte apoptosis in glucocorticoid-induced osteoporosis, we isolated primary osteocytes from murine calvaria for the analysis of the effects of dexamethasone in in vitro culture. The cells were identified by morphology, cytochemical staining, immunocytochemical staining and mRNA expression of phosphate-regulating gene with homology to endopeptidases on the X chromosome (PHEX) and sclerosteosis/van Buchem disease gene (SOST). We found that dexamethasone induced osteocyte apoptosis in a dose-dependent manner. A glucocorticoid receptor antagonist, mifepristone (RU486), suppressed dexamethasone-induced osteocyte apoptosis, suggesting that it was mediated by glucocorticoid receptor. Immunocytochemical stainings showed that glucocorticoid receptors are present in primary osteocytes, and they were translocated to nuclei after the exposure to dexamethasone. Addition of estrogen prevented glucocorticoid receptor translocation into nuclei. Corresponding antiapoptotic effects in primary osteocytes were also seen after the pretreatment of primary osteocytes with a picomolar concentration of estrogen. The pure antiestrogen ICI 182,780 inhibited estrogen effect on apoptosis induced by dexamethasone. These data suggest that glucocorticoid receptors play an important role in glucocorticoid-induced osteocyte apoptosis. Most importantly, estrogen has a protective effect {against osteocyte}{ }{apoptosis}. To conclude, the mechanism of glucocorticoid-induced osteoporosis may be due to the apoptosis of osteocytes, which can be opposed by estrogen.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号