首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   0篇
  国内免费   1篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   16篇
  2018年   10篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
排序方式: 共有86条查询结果,搜索用时 343 毫秒
21.
The epithelial-to-mesenchymal (-like) transition (EMT), a crucial embryonic development program, has been linked to the regulation of glioblastoma (GBM) progression and invasion. Here, we investigated the role of MIR517C/miR-517c, which belongs to the C19MC microRNA cluster identified in our preliminary studies, in the pathogenesis of GBM. We found that MIR517C was associated with improved prognosis in patients with GBM. Furthermore, following treatment with the autophagy inducer temozolomide (TMZ) and low glucose (LG), MIR517C degraded KPNA2 (karyopherin alpha 2 [RAG cohort 1, importin alpha 1]) and subsequently disturbed the nuclear translocation of TP53 in the GBM cell line U87 in vitro. Interestingly, this microRNA could inhibit autophagy and reduce cell migration and infiltration in U87 cells harboring wild-type (WT) TP53, but not in U251 cells harboring mutant (MU) TP53. Moreover, the expression of epithelial markers (i.e., CDH13/T-cadherin and CLDN1 [claudin 1]) increased, while the expression of mesenchymal markers (i.e., CDH2/N-cadherin, SNAI1/Snail, and VIM [vimentin]) decreased, indicating that the EMT status was blocked by MIR517C in U87 cells. Compared with MIR517C overexpression, MIR517C knockdown promoted infiltration of U87 cells to the surrounding structures in nude mice in vivo. The above phenotypic changes were also observed in TP53+/+ and TP53-/- HCT116 colon cancer cells. In summary, our study provided support for a link between autophagy and EMT status in WT TP53 GBM cells and provided evidence for the signaling pathway (MIR517C-KPNA2-cytoplasmic TP53) involved in attenuating autophagy and eliminating the increased migration and invasion during the EMT.  相似文献   
22.
Antrodia camphorata (AC) exhibits potential for engendering cell-cycle arrest as well as prompting apoptosis and metastasis inhibition in triple-negative breast cancer (TNBC) cells. We performed the current study to explore the anti-epithelial-to-mesenchymal transition (EMT) properties of fermented AC broth in TNBC cells. Our results illustrated that noncytotoxic concentrations of AC (20–60 μg/ml) reversed the morphological changes (fibroblastic-to-epithelial phenotype) as well as the EMT by upregulating the observed E-cadherin expression. Furthermore, we discovered treatment with AC substantially inhibit the Twist expression in human TNBC (MDA-MB-231) cells as well as in those that were transfected with Twist. In addition, we determined AC to decrease the observed Wnt/β-catenin nuclear translocation through a pathway determined to be dependent on GSK3β. Notably, AC treatment consistently inhibited the EMT by downregulating mesenchymal marker proteins like N-cadherin, vimentin, Snail, ZEB-1, and fibronectin; at that same time upregulating epithelial marker proteins like occludin and ZO-1. Bioluminescence imaging that was executed in vivo demonstrated AC substantially suppressed breast cancer metastasis to the lungs. Notably, we found that western blot analysis confirmed that AC decreased lung metastasis as demonstrated by upregulation of E-cadherin expression in biopsied lung tissue. Together with our results support the anti-EMT activity of AC, indicating AC as having the potential for acting as an anticancer agent for the treatment of human TNBC treatment.  相似文献   
23.
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis.  相似文献   
24.
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis.  相似文献   
25.
Tenascin-X is the largest member of the tenascin (TN) family of evolutionary conserved extracellular matrix glycoproteins, which also comprises TN-C, TN-R and TN-W. Among this family, TN-X is the only member described so far to exert a crucial architectural function as evidenced by a connective tissue disorder (a recessive form of Ehlers-Danlos syndrome) resulting from a loss-of-function of this glycoprotein in humans and mice. However, TN-X is more than an architectural protein, as it displays features of a matricellular protein by modulating cell adhesion. However, the cellular functions associated with the anti-adhesive properties of TN-X have not yet been revealed. Recent findings indicate that TN-X is also an extracellular regulator of signaling pathways. Indeed, TN-X has been shown to regulate the bioavailability of the Transforming Growth Factor (TGF)-β and to modulate epithelial cell plasticity. The next challenges will be to unravel whether the signaling functions of TN-X are functionally linked to its matricellular properties.  相似文献   
26.
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.  相似文献   
27.
Cysteine-rich protein 2 (CRP2) is a cofactor for smooth muscle cell (SMC) differentiation. Here, we examined the mechanism of CRP2 distribution dynamics during SMC differentiation. CRP2 protein directly associated with F-actin through its N-terminal LIM domain and Gly-rich region, as determined by ELISA. In undifferentiated cells that contain few actin stress fibers, CRP2 was broadly distributed throughout the whole cell, including the nucleus. After induction of SMC differentiation, CRP2 localized to actin stress fibers as they formed. The stress fiber-localized CRP2 entered the nucleus because of induced actin depolymerization. These CRP2 dynamics were reproduced by in silico simulation. CRP2 localization dynamics, which affect CRP2 function, are regulated by the formation of actin stress fibers in conjunction with SMC differentiation.  相似文献   
28.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   
29.
30.
Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号