首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   15篇
  国内免费   2篇
  201篇
  2023年   4篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   9篇
  2018年   7篇
  2017年   9篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   8篇
  2002年   5篇
  2001年   12篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
排序方式: 共有201条查询结果,搜索用时 0 毫秒
191.
In the pure stand of tropical seagrass,Syringodium isoetifolium, in a small oceanic island, Fiji, grazing effects of the seagrass-associated gammarid,Ampithoe sp., on seagrass and epiphytes were assessed in October 1989, November 1991, November 1992. Density of the gammarid was estimated with two methods, mesh bag method and tuft method. During the three years surveyed the density of the gammarid increased remarkably from 1989 to 1991, with heavy epiphytism. Gut contents of the gammarid were examined. Grazing rates on seagrass leaf with and without epiphytic blue-green algae were measured in a bottle experiment. Litter bag experiments were conducted using different mesh sizes each containing seagrass only and seagrass and gammarids. The seagrass leaf biomass in the litter bag reduced abruptly in both bags. After one week, 78–86% of seagrass biomass disappeared from the bags. Enhancement of decomposition of seagrass leaf by the gammarid grazing was observed. Oxygen consumption and ammonium excretion rates were measured simultaneously in bottle experiments. Carbon budget in the seagrass bed was estimated as follows: 0.9 gC m−2 day−1 in seagrass growth, gammarid grazing was about a half of it and further assimilated a half of it, about 0.1 gC m−2 day−1, and more than half of it become CO2 by respiration. Grazing effects on epiphyte and seagrass growth and production were discussed through the carbon budget and indirect interactions between seagrass, epiphytes and associated gammarids to explain the temporal change of seagrass and epiphyte dynamics.  相似文献   
192.
193.
  • Epiphytes offer an appealing framework to disentangle the contributions of chance, biotic and abiotic drivers of species distributions. In the context of the stress-gradient theory, we test the hypotheses that (i) deterministic (i.e., non-random) factors play an increasing role in communities from young to old trees, (ii) negative biotic interactions increase on older trees and towards the tree base, and (iii) positive interactions show the reverse pattern.
  • Bryophyte species distributions and abiotic conditions were recorded on a 1.1 ha tropical rainforest canopy crane site. We analysed co-occurrence patterns in a niche modelling framework to disentangle the roles of chance, abiotic factors and putative biotic interactions among species pairs.
  • 76% of species pairs resulted from chance. Abiotic factors explained 78% of non-randomly associated species pairs, and co-occurrences prevailed over non-coincidences in the remaining species pairs. Positive and negative interactions mostly involved species pairs from the same versus different communities (mosses versus liverworts) and life forms, respectively. There was an increase in randomly associated pairs from large to small trees. No increase in negative interactions from young to old trees or from the canopy to the base was observed.
  • Our results suggest that epiphytic bryophyte community composition is primarily driven by environmental filtering, whose importance increases with niche complexity and diversity. Biotic interactions play a secondary role, with a very marginal contribution of competitive exclusion. Biotic interactions vary among communities (mosses versus liverworts) and life forms, facilitation prevailing among species from the same community and life form, and competition among species from different communities and life forms.
  相似文献   
194.
195.
Nitrogen-fixation in the littoral benthos of an oligotrophic lake   总被引:1,自引:0,他引:1  
Blue-green algae are common in the benthos of Mirror Lake, New Hampshire (U. S. A.) — on macrophytes and on the lake bottom-and are probably responsible for the variable, sometimes high rates of N-fixation that detected by a series of acetylene-reduction assays during September and October.  相似文献   
196.
197.
The seasonal succession of epiphytic communities on Equisetum fluviatile was controlled both directly and indirectly by the macrophyte. Decaying macrophytic material supported rich algal growth and biomass accumulation in spring and early summer. Emergence of the macrophytes severely reduced underwater light availability, and the epiphytic algal biomass declined rapidly as a result of both lower photosynthetic activity of the epiphytic algae, and more intensive grazing by invertebrate herbivores. Epiphytic N: P ratios were lower than those in the water around suggesting that either the water was not the only source of phosphorus for the epiphytic algae or the algae took phosphorus up selectively from the water. Low epiphytic C: N ratios suggested a high potential nutritional value for herbivores.  相似文献   
198.
The community structure and productivity of epiphytic microalgae on field populations of eelgrass (Zostera marina L.) from a high flow regime were characterized under water-column nitrate enrichment over a 30–d period during the autumn growing season for the macrophyte. Epiphyte communities in replicate low-nitrogen sites (LOW-N, median water-column nitrate concentrations below detection) were compared to communities in replicate N-enriched sites wherein nitrate was leached from clay pots filled with enriched agar (N-ENRICH, median concentration ca. 6 μM NO3?-N; pots replaced at 8– to 12–d intervals). In experimental chambers, total epiphyte community productivity as 14C-bicarbonate uptake was determined from short-term (3–h) laboratory assays. Track light microscope-autoradiography enabled estimates of species-specific productivity for abundant algal taxa. After 6 d in the LOW-N and N-ENRICH communities, the crustose adnate red alga Sahlingia subintegra (Rosenvinge) Kornmann was dominant in terms of cell number and codominant in biovolume. Photosynthetic dinoflagellates, not previously reported as abundant in eelgrass epiphyte communities, were dominant in biovolume contribution after both 6 and 30 d in LOW-N communities. Nitrate enrichment stimulated the adnate monoraphid diatom Cocconeis placentula Ehr. but apparently inhibited dinoflagellates and the diatom Melosira sp. Total productivity of the epiphyte communities remained comparable in both the LOW-N and N-ENRICH sites. Shifts in community structure and species-specific productivity, however, indicated a controlling influence of nitrate supply on microalgal epiphytes in the field eelgrass community.  相似文献   
199.
200.
The biology, ecology, and distribution ofSelenicereus (Strophocactus)wittii, one of the least known taxa ofCactaceae, are described. This epiphyte climbs appressed to tree trunks with leaf-like, flattened stems and is found exclusively along the high waterline of black water rivers (Rio Negro, Vaupés, Apaporis) in the Igapó inundation forests of Amazonia. Ecophysiologically,S. wittii is a crassulacean acid metabolism (CAM) plant. It bears white, nocturnal flowers 25 cm in length which emit a fragrance consisting mainly of benzylalcohol, benzyl benzoate, and benzyl salicylate. They exhibit an extreme sphingophilous syndrome as an adaptation to pollination by probably only two species of hawkmoth from the generaAmphimoena andCocytius. The seeds, aberrant for the family, contain air-filled chambers and are water-dispersed. Thus,S. wittii represents the paradoxical life form of an hydrochorous epiphytic cactus which withstands periodical inundation.Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号