首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   14篇
  国内免费   2篇
  2023年   1篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   35篇
  2012年   6篇
  2011年   15篇
  2010年   5篇
  2009年   17篇
  2008年   13篇
  2007年   17篇
  2006年   10篇
  2005年   7篇
  2004年   13篇
  2003年   7篇
  2002年   5篇
  2001年   9篇
  2000年   10篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有261条查询结果,搜索用时 78 毫秒
91.
Theo Light 《Freshwater Biology》2003,48(10):1886-1897
1. This paper examines the distribution, habitat relationships, and potential for spread of non‐native signal crayfish (Pacifastacus leniusculus) in streams of the Truckee River catchment, California, U.S.A. Crayfish associations with natural features and with impoundments and flow alteration were examined in a survey of 33 streams. Abundance changes were followed over 5 years, which included some of the highest and lowest flows on record, in three streams, two unregulated and one regulated. Movement of marked crayfish was studied in one 0.5 km stream reach just upstream from a reservoir. 2. Signal crayfish were most abundant in low‐gradient streams and were positively associated with proximity to reservoirs (both upstream and downstream). Crayfish were more likely to be found in regulated than unregulated sites, and did not occur in sites upstream of barriers, such as culverts, that separated them from reservoirs or lakes. 3. Crayfish declined in abundance in years following particularly intense and prolonged wet‐season spates, leading to a negative association between crayfish abundance and both peak discharge and duration of bankfull flows. 4. Crayfish moved distances of up to 277 m, and at rates of up to 120 m day?1, suggesting significant dispersal ability. Larger crayfish moved greater distances and were more likely to move downstream. Female crayfish showed a pattern of upstream movement in early summer and downstream movement late in the summer, opposite the pattern found in two other studies. 5. These results suggest that natural or artificial gradient barriers and, in regulated systems, management of flow regimes to include bankfull or greater flows may help to control invasive crayfish in streams.  相似文献   
92.
This study describes the effects of the American red swamp crayfish, Procambarus clarkii Girard, on water quality and sediment characteristics in the Spanish floodplain wetland, Las Tablas de Daimiel National Park. Our short term enclosure study during a summer drawdown revealed that crayfish acted as a nutrient pump that transformed and translocated sediment bound nutrients to the water column. Water quality impoverishment was mainly due to the increase of dissolved inorganic nutrients (soluble reactive phosphorus and ammonia), and a significant increase of total suspended solids occurred likely as a result of crayfish associated bioturbation. At the same time, crayfish reduced the content of organic matter in the sediment and we observed a slight increase of total sediment phosphorus and nitrogen content as a result of crayfish benthic activity. P. clarkii effects, in terms of internal nutrient loading (229.91 mg TP m–2 d–1), were shown to be important on a local scale, indicating the significance of internal nutrient supply to water column primary producers particularly under low external supply (summer). Extrapolations to the whole ecosystem, however, revealed a negligible crayfish contribution (0.06%) to total internal nutrient loading (0.035 mg TP m–2 d–1). Hence, crayfish spatial heterogeneity patterns are important in global and local matter fluxes and nutrient cycles in wetlands.  相似文献   
93.
The importance of crayfish in the breakdown of rhododendron leaf litter   总被引:2,自引:0,他引:2  
1. Rhododendron (Rhododendron maximum) is a common evergreen shrub in riparian areas of the southern Appalachians, where its leaves can comprise a large proportion of leaf litter in streams. However, they are relatively refractory and generally considered a low quality food resource for detritivores. 2. Our objective was to assess whether macroconsumers [primarily crayfish (Cambarus bartonii)] influence rhododendron leaf breakdown in a forested southern Appalachian stream in both summer (when leaves other than rhododendron are relatively scarce) and autumn (when other leaves are relatively abundant). We conducted two leaf decay experiments, one in summer and one in autumn, using pre‐conditioned leaves. Macroconsumers were excluded from the benthos of a fourth‐order stream using electric ‘fences’; we predicted that excluding macroconsumers would reduce the decay rate of rhododendron leaves in both summer and autumn. 3. In both experiments, breakdown rate was lower in exclusion treatments. Macroconsumers accounted for approximately 33 and 54% of rhododendron decay in summer and autumn, respectively. We attribute this effect to direct shredding of rhododendron by crayfish. Biomass of insect shredders, insect predators and fungi did not differ between control and exclusion treatments, indicating that insectivorous sculpins (Cottus bairdi) had no effect on rhododendron decay and that omnivorous crayfish did not exert an indirect effect via alteration of insect or fungal biomass. 4. The influence of shredding insects varied between summer and autumn. In summer, when other, more palatable leaf types were not available, rhododendron leaf packs appeared to provide ‘resource islands’ for insect shredders. There was a significant inverse relationship between insect shredders and leaf pack mass in the summer exclusion treatment: insects were the only organisms eating leaves in this treatment and, as shredder biomass increased, remaining leaf pack mass decreased. In the control treatment, however, we did not see this relationship; here, the effect of insect shredders was presumably swamped by the impact of crayfish. In autumn, when other leaves were abundant, insect shredder biomass in rhododendron leaf packs was less than one‐third of summer values. 5. Even at low density (approximately 2 m–2) crayfish were able to influence an ecosystem process such as leaf decay in both summer and autumn. Given the threatened status of many crayfish species in the United States, this finding is especially relevant. Even small alterations in crayfish assemblages, whether via loss of native species and/or introduction of exotic species, may have significant repercussions for ecosystem function.  相似文献   
94.
1. Native crayfishes are often extirpated from portions of their range because of interactions with invasive species, anthropogenic alterations to environmental conditions or a combination of these factors. Our goal was to identify coarse‐scale natural and anthropogenic factors related to the current distributions of the invasive crayfish, Orconectes hylas, and two endemic crayfishes, Orconectes peruncus and Orconectes quadruncus in the St. Francis River drainage, Missouri, U.S.A. and to provide wider insights into the potential role of anthropogenic factors in facilitating species displacement. 2. We used classification trees to model coarse‐scale natural and anthropogenic environmental factors and their relation to the presence or absence of each species. Model results were then used to predict probability of presence for each species within each stream segment throughout the entire St. Francis River drainage. 3. Factors related to geology and soils were the best predictors of species distributions. A dichotomy of these factors explained much of the discrete distributions of the two native species. Agricultural‐related factors were identified as the most influential anthropogenic activity related to species distributions. All associations between the invasive species and anthropogenic factors were negative which suggested the invader was not likely to establish in heavily impacted areas. Overall, our models had high correct classification rates, and we were able to reliably predict the presence of the invader in the invaded drainage. 4. Given the negative associations of the invader with anthropogenic alterations at a coarse spatial scale, we believe other mechanisms are likely to be responsible for the widespread displacement of the two native species. These findings can be used to assist in conservation activities such as creation of refugia for native species and may direct future research to identify the mechanism(s) of species displacement.  相似文献   
95.
Abstract

New Zealand's two species of freshwater parastacid crayfishes have allopatric distributions, with one species in the North Island and northwestern South Island and the other in the eastern and southern South Island and Stewart Island. This gives the appearance of a vicariance event driven by uplift of the Southern Alps beginning in the Pliocene, and of former land connections across both Cook Strait and Foveaux Strait. However, separation of the two species may date from before the Southern Alps were formed. A diverse series of historical geological events is invoked to explain details of the distributions of these two species. Absence of Paranephrops from intermontane valleys of eastern flanks of the Southern Alps is notably different from patterns seen in freshwater fish species.  相似文献   
96.
This study reports about the spermatozoal ultrastructure of three species of astacid crayfish, i.e., the stone crayfish Austropotamobius torrentium, signal crayfish Pacifastacus leniusculus, and noble crayfish Astacus astacus. The acrosome is a cup shaped and electron‐dense structure at the anterior of the spermatozoon and comprises three layers of differing electron densities filled with parallel filaments that extend from the base to the apical zone. The acrosome was significantly longer in A. astacus than in P. leniusculus and the shortest acrosome belongs to A. torrentium. The width of the acrosome was significantly narrower in A. torrentium than in P. leniusculus and the widest acrosome belongs to A. astacus. The L:W ratio was significantly greater in A. torrentium than in P. leniusculus and the lowest ratio belongs to A. astacus. Radial arms are visible on each side of the acrosome or nucleus in sagittal view and wrap around the spermatozoon. Each radial arm comprises a parallel bundle of microtubules arranged along the long axis within a sheath. The nucleus, with decondensed material, is located in the posterior of the cell. All parts of the spermatozoon are tightly enclosed within an extracellular capsule. Despite a well‐conserved general structure and similarity of pattern among these spermatozoa, differences in the dimensions of the acrosome within the studied species may be useful to help distinguish the different crayfish species. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
97.
The central projections of sensory neurones innervating a strand chordotonal organ (CO) in the tailfan of the crayfish, Procambarus clarkii (Girard) have been investigated. The CO monitors movement of the exopodite of the tailfan relative to the endopodite. Intracellular recording and staining were used to characterise the response of the sensory neurones to applied stretches of the chordotonal organ and to reveal their morphology. Two gross morphological types of afferents were found: those that terminated in the terminal (6th) abdominal ganglion on the side ipsilateral to the sensory receptor, and those that had branches in the terminal ganglion and an intersegmental axon that ascended rostrally. Afferents responded to position, velocity and direction of imposed CO displacement. Afferents with particular physiological properties had similar morphologies in different crayfish. Irrespective of their directional responses, afferents had central projection areas dependent upon their velocity thresholds. Many afferents responded only during movement of the CO, and those with the lowest velocity thresholds (2°/s) had branches that projected most anteriorly, while those with progressively higher velocity thresholds (up to 200°/s) projected progressively more posteriorly. Afferents that responded to low velocity ramp movements and spiked tonically projected to more posterior areas of the ganglion than those that responded only to movements.Abbreviations A6SCI sixth abdominal sensory commissure I - CO chordotonal organ - DMT dorsal medial tract - G6 sixth abdominal ganglion - LDT lateral dorsal tract - MDT medial dorsal tract - MVT medial ventral tract - R1–4 nerve roots 1–4 - VLT ventral lateral tract - VMT ventral medial tract  相似文献   
98.
The output of a neuronal network results generally from both the properties of the component neurons and their synaptic relationships. This article aims at synthesizing various results obtained on the neural network generating locomotion in vitro. In the preparation used, consisting of the last three thoracic ganglia (3–5) along with motor nerves from the 5th leg ganglion to the promotor, remotor, levator and depressor muscles, motor nerve recordings generally revealed only tonic activity in several different motoneurons (MNs). However, rhythmic activity can be obtained by the use of cholinergic agents such as the oxotremorine (Oxo) superfused in the bath (5 × 10−5 M). If Oxo is pressure-ejected locally in the ganglion, it is possible, depending upon the locus where the drug is applied, to elicit a rhythmic activity restricted to a group of antagonistic MNs. To analyze how cholinergic agents are able to induce such rhythmic activity, very small volumes of drug (50–200 pl), were applied close to the recording electrode. Two types of depolarizing response occurred: a fast large amplitude depolarization (5–20 mV) and a long lasting (10 s to several minutes) low amplitude depolarization (1–3 mV). These responses persisted in the presence of TTX and Co2+. The transient initial depolarization is a mixed nicotinic and muscarinic voltage-independent response during which the input resistance decreases by 20 to 40%. In contrast, the long lasting component is voltage-dependent, exclusively muscarinic and associated to a 5–10% increase of input resistance due to the closing of a K+ conductance that is active at the resting Vm, and totally suppressed at holding potentials below −70 mV. More generally, K+ currents activated at resting potential are responsible for membrane potential stability. The injection of TEA, a blocker of the K+ currents, through the recording electrode is able to unmask plateaus above a threshold depolarization. These plateaus are TTX-sensitive but persist in the presence of Ca2+ channel blockers. Moreover, in 10% of TEA-filled MNs a spontaneous pacemaker activity was revealed. The organization of the locomotor network is also based upon connections between MNs and INs. Within a MN pool, connections are only loosely established, appearing to consist mainly of electrical coupling. Inhibitory synaptic connections between MNs of opposite pools are mediated by chloride channels. However, the neurotransmitter involved could be either GABA or glutamate. Therefore, at the level of a given joint, a basic rhythm occurs due to both motoneuronal membrane properties and motoneuronal connectivity. However, the coordination of all MNs of an entire leg during fictive walking activity requires the involvement of INs. Based upon these data, we propose a two-stage model of the locomotor network organization: a joint motoneuronal level and a whole leg interneuronal level.  相似文献   
99.
Using confocal laser scanning and conventional light microscopy, the morphology and organization of the muscle fibres in a proprioceptor, the thoracic coxal muscle receptor organ (TCMRO), and the associated 'extrafusal' promotor muscle were investigated in two species of decapod crustacea, the crayfish Cherax destructor and the mud crab Scylla serrata . The diameter of the TCMROs was shown to increase distally, with an increase up to 350% recorded for the crayfish. The tapered shape of the crayfish TCMRO was demonstrated to amplify movements mechanically at the transducer region where the afferent nerves attach. Serial sectioning of the TCMROs, showed that the fibre number increased in the proximal to distal direction from 14 to 30 fibres in the crayfish and from 7 to 20 in the crab. Optical sectioning with the laser scanning confocal microscope revealed that the increase in fibre numbers was the result of muscle fibres branching in the distal third section of the TCMRO. The percentage of muscle tissue in the cross-sectional area in the TCMRO was found to be only 35.2% and 64.6% in the crayfish and crab, respectively. Longitudinal sectioning using laser scanning confocal microscopy revealed the average sarcomere length of the TCMRO muscle fibres of both species to be in the intermediate range for crustacean muscle fibres (4.1 ± 0.1 µm and 4.55 ± 0.34 µm for the crayfish and crab) compared with the long sarcomere muscle fibres in the associated promotor muscles (7.87 ± 0.2 and 10.6 ± 0.6 µm). The distinct morphology of the TCMRO muscle fibres – smaller diameter, intermediate sarcomere length and branching of fibres compared to the larger, long sarcomere promotor fibre muscle fibres – suggest that the TCMRO muscle fibres are specialized in their role of proprioception.  相似文献   
100.
Nyström  Per  Pérez  Jose R. 《Hydrobiologia》1998,368(1-3):201-208
Optimal foraging theory was used to explain selective foraging by the introduced signal crayfish (Pacifastacus leniusculus) on the thin-shelled common pond snail (Lymnaea stagnalis). Crayfish predation efficiency was studied in relation to habitat complexity and snail size. In a pool experiment (area 1.3 m2) single adult crayfish were allowed to feed on four size classes of snails for one week. A pair-wise preference trial (aquarium experiment) tested if adult crayfish selectively predated on particular size classes of snail and if prey value (expressed as snail dry mass per handling time) could explain the size range of snails chosen. Crayfish preferred the smallest size classes of snails in both pool and aquaria experiments. In the pool experiment crayfish had a strong effect on snail survival. Habitat complexity did not affect overall snail survival, but resulted in reduced predation pressure on the smallest size classes of snails. Handling time and shell-thickness increased exponentially with increasing snail size, and the two smallest size classes had the highest prey values. The results suggest that crayfish can structure the abundance and size distribution of thin-shelled snails, through size-selective predation and reduction of macrophytes. The mechanisms behind the choice of snails may be based on prey value and reduced exposure time to predators and conspecifics. Crayfish effects on snail size distribution may be less pronounced in complex habitats such as macrophyte beds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号