首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1261篇
  免费   192篇
  国内免费   55篇
  2024年   2篇
  2023年   9篇
  2022年   29篇
  2021年   37篇
  2020年   55篇
  2019年   98篇
  2018年   83篇
  2017年   49篇
  2016年   49篇
  2015年   64篇
  2014年   104篇
  2013年   85篇
  2012年   72篇
  2011年   91篇
  2010年   56篇
  2009年   55篇
  2008年   57篇
  2007年   55篇
  2006年   44篇
  2005年   52篇
  2004年   41篇
  2003年   30篇
  2002年   26篇
  2001年   25篇
  2000年   25篇
  1999年   29篇
  1998年   20篇
  1997年   24篇
  1996年   10篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1992年   16篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   12篇
  1982年   10篇
  1981年   5篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有1508条查询结果,搜索用时 15 毫秒
41.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   
42.
43.
Sk Moquammel Haque 《Grana》2017,56(2):124-136
The various normal and abnormal stages of meiosis and pollen mitosis of Drimiopsis botryoides are described, and a comparison between naturally propagated in vivo and tissue culture derived ex vitro plants in respect to their cytological behaviour presented. We also describe the floral morphology and investigate the relationship between the floral developmental stages and the progression of microgametogenesis. In total, 33 bivalents are observed in diakinesis, which indicate the diploid number 2n = 66 and this number is cross-checked by a haploid set of n = 33 chromosomes in pollen mitosis. Only 6.8% and 4.9% meiotic abnormalities were recorded on in vivo and ex vitro plants, respectively, which led to the formation of non-viable pollen. Finally, the microspores have to develop into tri-cellular male gametophyte. Only 0.2% pollen grains are found with a micro-nucleus. Though the higher pollen viability was recorded on both in vivo (89.3 ± 4.1%) and ex vitro (92.1 ± 4.6%) plants, but surprisingly the pollen germination rate is extremely low with 13.6 ± 1.74% and 21.3 ± 1.55%, respectively. The present study obviously enriches the cytological database of D. botryoides and may help future research on androgenesis and genetic improvement.  相似文献   
44.
Osteoarthritis (OA) is a common joint disease in the middle and old age group with obvious cartilage damage, and the regeneration of cartilage is the key to alleviating or treating OA. In stem cell therapy, bone marrow stem cell (BMSC) has been confirmed to have cartilage regeneration ability. However, the role of stem cells in promoting articular cartilage regeneration is severely limited by their low homing rate. Stromal cell‐derived factor‐1α (SDF‐1α) plays a vital role in MSC migration and involves activation, mobilization, homing and retention. So, we aim to develop SDF‐1α‐loaded microbubbles MB(SDF‐1α), and to verify the migration of BMSCs with the effect of ultrasound combined with MB(SDF‐1α) in vitro and in vivo. The characteristics of microbubbles and the content of SDF‐1α were examined in vitro. To evaluate the effect of ultrasound combined with chemotactic microbubbles on stem cell migration, BMSCs were injected locally and intravenously into the knee joint of the OA model, and the markers of BMSCs in the cartilage were detected. We successfully prepared MB(SDF‐1α) through covalent bonding with impressive SDF‐1α loading efficacy loading content. In vitro study, ultrasound combined with MB(SDF‐1α) group can promote more stem cell migration with highest migrating cell counts, good cell viability and highest CXCR4 expression. In vivo experiment, more BMSCs surface markers presented in the ultrasound combined with MB(SDF‐1α) group with or without exogenous BMSCs administration. Hence, ultrasound combined with MB(SDF‐1α) could promote the homing of BMSCs to cartilage and provide a novel promising therapeutic approach for OA.  相似文献   
45.
46.
Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers.  相似文献   
47.
The decline in DNA repair capacity contributes to the age‐associated decrease in genome integrity in somatic cells of different species. However, due to the lack of clinical samples and appropriate tools for studying DNA repair, whether and how age‐associated changes in DNA repair result in a loss of genome integrity of human adult stem cells remains incompletely characterized. Here, we isolated 20 eyelid adipose‐derived stem cell (ADSC) lines from healthy individuals (young: 10 donors with ages ranging 17–25 years; old: 10 donors with ages ranging 50–59 years). Using these cell lines, we systematically compared the efficiency of base excision repair (BER) and two DNA double‐strand break (DSB) repair pathways—nonhomologous end joining (NHEJ) and homologous recombination (HR)—between the young and old groups. Surprisingly, we found that the efficiency of BER but not NHEJ or HR is impaired in aged human ADSCs, which is in contrast to previous findings that DSB repair declines with age in human fibroblasts. We also demonstrated that BER efficiency is negatively associated with tail moment, which reflects a loss of genome integrity in human ADSCs. Mechanistic studies indicated that at the protein level XRCC1, but not other BER factors, exhibited age‐associated decline. Overexpression of XRCC1 reversed the decline of BER efficiency and genome integrity, indicating that XRCC1 is a potential therapeutic target for stabilizing genomes in aged ADSCs.  相似文献   
48.
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO2 and N2O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set‐up. We found that higher species richness and increased functional dissimilarity of species mixtures led to increased faunal‐induced CO2 emission (up to 10%), but decreased N2O emission (up to 62%). Large ecosystem engineers such as earthworms were key drivers of both CO2 and N2O emissions. Interestingly, increased biodiversity of other soil fauna in the presence of earthworms decreased faunal‐induced N2O emission despite enhanced C cycling. We conclude that higher soil fauna functional diversity enhanced the intensity of belowground processes, leading to more complete litter decomposition and increased CO2 emission, but concurrently also resulting in more complete denitrification and reduced N2O emission. Our results suggest that increased soil fauna species diversity has the potential to mitigate emissions of N2O from soil ecosystems. Given the loss of soil biodiversity in managed soils, our findings call for adoption of management practices that enhance soil biodiversity and stimulate a functionally diverse faunal community to reduce N2O emissions from managed soils.  相似文献   
49.
50.
ObjectivesStromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo.MethodsCell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo.ResultsSDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4+ cells and CD90+/CD34 stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo.ConclusionsSDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号