首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50456篇
  免费   3366篇
  国内免费   5078篇
  2023年   791篇
  2022年   1064篇
  2021年   1258篇
  2020年   1217篇
  2019年   1898篇
  2018年   1704篇
  2017年   1397篇
  2016年   1284篇
  2015年   1238篇
  2014年   2443篇
  2013年   3203篇
  2012年   1888篇
  2011年   2291篇
  2010年   1728篇
  2009年   2297篇
  2008年   2415篇
  2007年   2635篇
  2006年   2333篇
  2005年   1920篇
  2004年   1666篇
  2003年   1619篇
  2002年   1430篇
  2001年   1238篇
  2000年   1010篇
  1999年   892篇
  1998年   865篇
  1997年   810篇
  1996年   806篇
  1995年   798篇
  1994年   776篇
  1993年   685篇
  1992年   686篇
  1991年   669篇
  1990年   513篇
  1989年   547篇
  1988年   491篇
  1987年   477篇
  1986年   453篇
  1985年   712篇
  1984年   956篇
  1983年   753篇
  1982年   799篇
  1981年   632篇
  1980年   641篇
  1979年   577篇
  1978年   456篇
  1977年   419篇
  1976年   383篇
  1974年   255篇
  1973年   262篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Gluco-oligosaccharides were synthesized through the enzymatic condensation of D-glucose at high concentration using a commercial almond beta-glucosidase. The synthesis reactions were carried out with both free and immobilized enzyme, with or without sorbitol, an efficient depressor of water activity (a(w)) in the presence of different glucose concentrations. The yield and the composition of the gluco-oligosaccharides produced changed with the reaction mixture and the form of the enzyme used (free or immobilized). The use of 5 M glucose solution permitted only disaccharides to be obtained, whereas with a glucose concentration of 7.5 M glucose, di-, tri-, and tetrasaccharides were produced. A 7.5 M glucose solution used with 4.4 M sorbitol gave three times more disaccharides than the same solution without sorbitol. Moreover, the immobilized enzyme was much more active in synthesis. The synthesis yield (oligomers mg/mL . mg of enzyme) after immobilization was 573% compared to that of the free enzyme, when a 7.5 M glucose solution was tested. The effects of substrate concentration, sorbitol addition and enzyme immobilization were investigated. (c) 1993 John Wiley & Sons, Inc.  相似文献   
992.
When seven different hydrolytic enzymes (four proteases and three lipases) were lyophilized from aqueous solution containing a ligand, N-Ac-L-Phe-NH(2), their catalytic activity in anhydrous solvents was far greater (one to two orders of magnitude) than that of the enzymes lyophilized without the ligand. This ligand-induced activation was expressed regardless of whether the substrate employed in organic solvents structurally resembled the ligand. Furthermore, nonligand lyoprotectants [sorbitol, other sugars, and poly(ethylene glycol)] also dramaticaliy enhanced enzymatic activity in anhydrous solvents when present in enzyme aqueous solution prior to lyophilization. The effects of the ligand and of the lyoprotectants were nonadditive, suggesting the same mechanism of action. Excipient activated and nonactivated enzymes exhibited identical activities in water. Also, addition of the excipients directly to suspensions of nonactivated enzymes in organic solvents had no appreciable effect on catalytic activity. These observations indicate that the mechanism of the excipient-induced activation is based on the ability of the excipients to alleviate reversible denaturation of enzymes upon lyophilization. Activity enhancement induced by the excipients is displayed even after their removal by washing enzymes with anhydrous solvents. Subtilisin Carlsberg, lyophilized with sorbitol, was found to be a much more efficient practical catalyst than its "regular" counterpart. (c) 1993 John Wiley & Sons, Inc.  相似文献   
993.
Basic issues in the culture of the extremely thermophilic archaeon, Methanothermus fervidus, have been investigated, including culture medium formulation, substrate yield and product yield coefficient, growth rate and stoichiometry, and H(2) uptake kinetics. The pH optimum for growth of this organism was estimated at 6.9. Growth medium buffered with PIPES instead of bicarbonate supported both increased growth rate and maximum biomass concentration. Substitution of titanium(III) citrate for the reducing agent sodium sulfide improved culture performance as well. However, independent adjustment of iron and nickel concentrations from 11 to 111 muM, respectively, and carbon dioxide partial pressure from 5 to 20 psia did not impact the culture of M. fervidus significantly. An elemental balance approach was utilized to aid in design of a defined medium to support growth to a target maximum biomass concentration of at least 1.0 g dry wt/L. The growth of this organism was limited by H(2) availability in this reformulated culture medium. The maximum growth rate and biomass concentration achieved in anaerobic vials with the defined medium was 0.16 h(-1) and 0.74 g dry wt/L, respectively. This maximum biomass concentration was a 72% improvement over that obtained with a literature-based defined medium. The Monod parameter, K(s), with H(2) as limiting substrate, was estimated at 1.1 +/- 0.4 psia (55 +/- 20 muM in the broth), based on a H(2) consumption study. Representative values for the substrate yield, Y(X/CO(2) ), and product yield coefficient, Y(CH(4)/) (X), were determined experimentally to be 1.78 +/- 0.04 g dry wt/mol CO(2), and 0.52 +/- 0.01 mol CH(4)/g dry wt, respectively. A bench-scale fermentation system suitable for the culture of extremely thermophilic anaerobes was designed and constructed and proved effective for the culture of M. fervidus. (c) 1993 Wiley & Sons, Inc.  相似文献   
994.
The possibility of continuously measuring the heat produced by microorganisms in an ordinary laboratory fermentor was studies. An inventory of the heat flows influencing the temperature of the culture was made. The magnitude and standard deviation in these heat flows were studied from theoretical and practical viewpoints. Calibration procedures were tested, and a model describing the heat flows in steady state and during dynamic conditions was made. Microbial heat production could be calculated accurately with the help of this model, appropriate temperature measurements, and equipment properties measured during the calibration procedures. It was found that the measurement of heat production could be done with an accuracy similar to that in the O(2) uptake measurement. (c) 1993 John Wiley & Sons, Inc.  相似文献   
995.
A novel process has been used to biodegrade phenol present in an acidic (1 M HCI) and salty (5% w/w NaCl) synthetically bioreactor, in which the phenol present in the wastewater is separated from the inorganic components by means of a silicone rubber membrane. Transfer of the phenol from the wastewater and into a biological growth medium allows biodegradation to proceed under controlled conditions which are unaffected by the hostile inorganic composition of the wastewater. At a wastewater flow rate of 18 mL h(-1) (contact time 6 h), 98.5% of the phenol present in the wastewater at an inlet concentration of 1000 mg ( (-1) ) was degraded; at a contact time of 1.9 h, 65% of the phenol was degraded. Phenol degradation was accompanied by growth of a biofilm on the membrane tubes and by conversion of approximately 80% of the carbon entering the system to CO(2) carbon. Analysis of the transport of phenol across the membrane revealed that the major resistance to mass transfer arose in the diffusion of phenol across the silicone rubber membrane. A mathematical model was used to describe the transfer of phenol across the membrane and the subsequent diffusion and reaction of phenol in the biofilm attached to the membrane tube. This analysis showed that (a) the attached biofilm significantly lowers the mass transfer driving force for phenol across the membrane, and (b) oxygen concentration limits the phenol degradation rate in the biofilm. These conclusions from the model are consistent with the experimental results. (c) 1993 Wiley & Sons, Inc.  相似文献   
996.
A kinetic study of the activity of mushroom polyphenol oxidase in an organic system was carried out to obtain detailed enzyme kinetic data in relation to optimization of reaction conditions and substrate specificity. A simple method for consistent measurement of reaction rates in the heterogeneous enzyme/organic solvent system (consisting of immobilized polyphenol oxidase and a hydrated solution of the substrate in chloroform) was designed. The aqueous content of the system was optimized using p-cresol as the substrate. With this system, a crude extract of Agaricus bisporus was used to hydroxylate and oxidize a range of selected p-substituted phenolic substrates, yielding o-quinone products. Michaelis-Menten kinetics were used to obtain apparent K(M) and V(max) values with respect to each of these substrates. Results from this analysis indicated a correlation between the enzymic kinetic parameters obtained and the steric requirements of the substrates, which could be rationalized in terms of the restricted flexibility of the enzyme when it is in chloroform and also in terms of substrate and solvent hydrophobicity. In the course of the investigation UV molar absorption coefficients of several o-quinones were measured by a novel method: (1)H nuclear magnetic resonance (NMR) spectroscopy was employed to determine component concentrations in reaction mixtures resulting from the transformation of phenols by polyphenol oxidase in chloroform. Thus the UV molar absorption coefficients could be obtained directly, avoiding the necessity to isolate the water-sensitive, unstable o-quinones. (c) 1993 John Wiley & Sons, Inc.  相似文献   
997.
The storage stability of bilirubin oxidase was studied in water-in-oil CTAB microemulsions with a chloroformrich continuous organic phase. The kinetics of the inactivation process were best described by a double exponential equation. Approximately half of enzymatic activity was lost during a "fast" phase with a half life of ca. 50 min, whereas the remaining activity was lost much more slowly (half life ca. 1000 min). Rates of inactivation were not affected significantly by variation of either solvent composition or concentration of water droplets, but inactivation was more rapid when droplet size was very small. Steady-state enzyme kinetics were studied at various stages in the inactivation process, and it was shown that inactivation occurred without change in the K(m) of the enzyme for bilirubin. Stability was also studied in a liquid/solid two-phase system; it was found that the inactivation process in this system; it was found that the inactivation process in this system was best described by a single exponential term. The rate was similar to the "fast" phase rate observed in the water-in-oil microemulsion system. Inactivation of the enzyme slow. Addition of the surfactant CTAB to the aqueous environment increased the rate of inactivation to levels comparable to those of the "slow" phase observed in water-in-oil microemulsions. (c) 1993 Wiley & Sons, Inc.  相似文献   
998.
Pressure affects enzyme function in nonaqueous media. Activation volumes have been determined and provide evidence that the primary effect of pressure is to enhance the stripping of water off an enzyme in polar organic solvents and leads to decreased enzymatic activity. Activation volumes of subtilisin Carlsberg in organic solvents, particularly with the enzyme hydrated, have a larger magnitude than activation volumes determined in aqueous solutions. This study provides further evidence that enzymatic activity in polar organic solvents is dominated by the interaction of enzyme-bound water with the solvent. From a practical standpoint, however, the results of this study suggest that enzymatic catalysis in organic solvents may be controlled by the combined effects of pressure and enzyme hydration. (c) 1993 John Wiley & Sons, Inc.  相似文献   
999.
Reduction in nutrient loss during dialysis cultivation of Escherichia coli on a glycerol medium was investigated. A dialysis reactor with an inner fermentation and an outer dialysis chamber was used. Aerobic condition was maintained by limiting the glycerol feed rate to an optimum value which was estimated from the oxygen requirements for glycerol oxidation and oxygen transfer capacity of the reactor. High reduction in nutrient loss was achieved by using water as the dialyzing fluid. However, osmotic movement of water from the dialysis to the fermentation chamber was observed, and the final cell concentration was low. With a nutrient-split feeding strategy (feeding glycerol directly to the fermentation chamber and dialyzing with salt solution), glycerol loss was small, there was no osmotic flux of water to the fermentation chamber, and the cell concentration was high. Both glycerol and salt loss could be avoided, and a cell concentration of 170 g/L was obtained when the dialysis process was substituted by addition of XAD adsorbents to the dialysis chamber. Application of this nutrient-split feeding strategy to cell cultivation in a stirred tank reactor, coupled with dialysis in external dialyzer modules, resulted in low cell concentrations. (c) 1993 Wiley & Sons, Inc.  相似文献   
1000.
Tyrosyl ring motions in alpha-lytic protease were investigated by solid-state deuterium nuclear magnetic resonance (NMR) spectroscopy in lyophilized enzyme powder, in powder suspended in organic solvents, and in aqueous crystals. Ring flipping rates were determined by examining deuterium quadrupole echo line shapes. Of the four Tyr residues in the enzyme, one was flipping at the slow (< or =10(3) s(-1)) and one at the fast (> or =10(7) s(-1)) exchange limit of the line shape experiment in all the environments tested. Flipping rates of the remaining two Tyr residues depended markedly on the solvent, with the lowest flipping rates (< or =10(3) s(-1) for both residues) observed in the enzyme powder, whether dry or suspended in hydrophobic tert-butyl methyl ether. In hydrophilic dioxane and acetonitrile, the mobility of these residues increased to 10(4) and 10(5) s(-1). The latter rate rose further to 10(6) s(-1) in the hydrated hydrophilic solvents and to > or =10(7) s(-1) in aqueous crystals. The deuterium spectrum of native alpha-lytic protease was compared with that of the enzyme whose active center was covalently modified with an inhibitor, which binds next to Tyr-123, constraining its ring. This experiment revealed that water addition to acetonitrile specifically increased the flipping rate of this active center residue. Librational motions ("wobbling"), estimated by their effect on spin-lattice relaxation times, were slowest in the anhydrous solvents, intermediate in the hydrated solvents, and fastest in the aqueous crystals. Thus, alpha-lytic protease is more rigid in organic solvents than in water, as judged by mobility of its tyrosyl residues. Water stripping by hydrophilic solvents did not increase enzyme rigidity, nor were there clear correlations between mobility and either enzymatic activity or solvent dielectric constant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号