首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1568篇
  免费   225篇
  国内免费   249篇
  2024年   15篇
  2023年   55篇
  2022年   78篇
  2021年   76篇
  2020年   69篇
  2019年   98篇
  2018年   79篇
  2017年   68篇
  2016年   71篇
  2015年   67篇
  2014年   84篇
  2013年   189篇
  2012年   54篇
  2011年   90篇
  2010年   64篇
  2009年   78篇
  2008年   73篇
  2007年   73篇
  2006年   58篇
  2005年   56篇
  2004年   50篇
  2003年   52篇
  2002年   62篇
  2001年   34篇
  2000年   34篇
  1999年   35篇
  1998年   18篇
  1997年   37篇
  1996年   10篇
  1995年   24篇
  1994年   28篇
  1993年   19篇
  1992年   24篇
  1991年   18篇
  1990年   10篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   8篇
  1984年   16篇
  1983年   11篇
  1982年   9篇
  1981年   4篇
  1980年   3篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2042条查询结果,搜索用时 15 毫秒
71.
Non-productive cellulase adsorption onto lignin is a major inhibitory mechanism preventing enzymatic hydrolysis of lignocellulosic feedstocks. Therefore, understanding of enzyme–lignin interactions is essential for the development of enzyme mixtures and processes for lignocellulose hydrolysis. We have studied cellulase–lignin interactions using model enzymes, Melanocarpus albomyces Cel45A endoglucanase (MaCel45A) and its fusions with native and mutated carbohydrate-binding modules (CBMs) from Trichoderma reesei Cel7A. Binding of MaCel45A to lignin was dependent on pH in the presence and absence of the CBM; at high pH, less enzyme bound to isolated lignins. Potentiometric titration of the lignin preparations showed that negatively charged groups were present in the lignin samples and that negative charge in the samples was increased with increasing pH. The results suggest that electrostatic interactions contributed to non-productive enzyme adsorption: Reduced enzyme binding at high pH was presumably due to repulsive electrostatic interactions between the enzymes and lignin. The CBM increased binding of MaCel45A to the isolated lignins only at high pH. Hydrophobic interactions are probably involved in CBM binding to lignin, because the same aromatic amino acids that are essential in CBM–cellulose interaction were also shown to contribute to lignin-binding.  相似文献   
72.
The various human‐induced threats imposed on nature have recently triggered the study of species' distributions. We developed potential suitability models using two algorithms for a threatened African mahogany, Entandrophragma angolense, in three East African countries; Kenya, Tanzania and Uganda. The effect of features selection and modelling algorithm selection on potential suitability predictions was explored. Occurrence records and high‐resolution environmental data were used. The two species distribution modelling techniques were genetic algorithm rule for prediction; and maximum entropy modelling. With Maxent, the area under the receiver characteristic operating curve (AUC) for potential distribution models tested on independent data ranged from 0.942 to 0.972 when using automatic features and from 0.974 to 0.666 with target or specific features. With GARP, AUC for potential distribution models ranged from 0.591 to 0.736 with all rule types and from 0.388 to 0.805 for specific rule types (Tables  1  and 2 ). The area under the E. angolense potential suitability was best predicted by soil, rainfall and aspect using GARP. Potential suitability increased with increasing aspect and decreased with increasing slope. Low rainfall and elevation increased potential suitability, while high levels of either variable decreased potential suitability. Potential suitability maps for vulnerable species require using a multi‐algorithm, fine scale data approach and incorporation of environmental variables like soil, slope, land use and elevation. Species distribution models can offer insight on the distribution requirements of vulnerable species and help guide the development of management plans. Results of this study suggest that E. angolense management plans should promote the protection of terrestrial forests surrounding water bodies including Mabira forest in Uganda.  相似文献   
73.
Pretreatment of rice straw by using renewable cholinium amino acids ionic liquids ([Ch][AA] ILs)‐water mixtures and the subsequent enzymatic hydrolysis of the residues were conducted in the present work. Of the eight mixtures composed of ILs and water, most were found to be effective for rice straw pretreatment. After pretreatment with 50% ILs‐water mixtures, the enzymatic digestion of the lignocellulosic biomass was enhanced significantly, thus leading to satisfactory sugar yields of >80% for glucose and approximately 50% for xylose. To better understand the ILs pretreatment mechanism, confocal laser scanning microscopy combined with immunolabeling and transmission electron microscopy were used to visualize changes in the contents and distribution of two major components—lignin and xylan. The results coupled with changes in chemical structures (infrared spectra) of the substrates indicated occurrence of extensive delignification, especially in cell corner and compound middle lumen of cell walls, which made polysaccharides more accessible to enzymes. This pretreatment process is promising for large‐scale application because of the high sugar yields, easy handling, being environmentally benign and highly tolerant to moisture, and significantly reduced cost and energy consumption. Biotechnol. Bioeng. 2013; 110: 1895–1902. © 2013 Wiley Periodicals, Inc.  相似文献   
74.
对香豆酸∶CoA连接酶(4-coumarate: coenzyme A ligase,4CL)是植物苯丙烷类代谢途径中的一个重要的酶.4CL以肉桂酸衍生物(香豆酸、咖啡酸、阿魏酸等)、ATP和CoA为底物合成相应的酰基-CoA酯,这些酰基-CoA酯是一系列重要化合物(如木质素)的前体.4CL的酶催化反应分两步进行:第一步以肉桂酸衍生物和Mg2 -ATP为底物合成酰基-AMP,第二步用CoA取代AMP,产生酰基-CoA酯,催化过程中酶的构象产生明显的变化.因为4CL在木质素的合成中所起的作用,这个酶是通过蛋白质工程方法改进林产品质量的重要靶标.我们通过X射线衍射技术,解析了毛白杨对香豆酸∶CoA连接酶1(Pt4CL1)与其中间产物对香豆酰-AMP的复合物晶体结构,与同家族成员结构比对,确定所获得的蛋白质结构为Pt4CL1催化第二步反应,即酰基-CoA酯合成的构象.结构分析表明:His-234残基在Pt4CL1的酶催化机理中起着多重作用,即通过侧链与AMP磷酸基团形成氢键,降低磷酸基团的负电荷,催化CoA的亲核取代反应;侧链可以采取两种不同的构象以调节CoA进入Pt4CL1的催化中心;His-234的侧链还可能夺取CoA巯基的质子,从而增强CoA的亲核反应活性.突变体酶活数据结果也显示His-234对Pt4CL1的活性非常重要,是Pt4CL1催化中心的活性残基.  相似文献   
75.
Cultured crown gall cells of Catharanthus roseus Don (Vinca rosea L.) was found to contain brassinosteroids. These were identified as brassinolide and castasterone by GC/MS. This is the first conclusive identification of endogenous brassinosteroids in cultured cells.  相似文献   
76.
The presence of α-ketoglutarate (α-KG) dehydrogenase complex in the glutamate-producing bacteria was demonstrated for the first time with Brevibacterium flavum. The partially purified enzyme, which was specific to KG and NAD+ with the usual requirements for other co-factors, was labile and stabilized by glycerol, Mg2+, and thiamine pyrophosphate. The enzyme showed an optimum pH of 7.6 and Kms of 80, 86, and 61 μm for KG, NAD+, and CoA, respectively, cis-Aconitate, succinyl-CoA, NADPH, NADH, pyruvate, and oxalacetate strongly inhibited the activity, while it was activated by acetyl-CoA, but not by AMP. Various inorganic and organic salts also inhibited the activity. When cells were cultured in glucose and acetate media, the specific activity of the cell extracts increased markedly and reached to a maximum at the late-logarithmic phase. Then, it decreased to the basal level. The addition of glutamate stimulated the synthesis of the enzyme.  相似文献   
77.
Formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 7 halfcystine residues per subunit monomer, as checked by the method of performic acid oxidation. Approximately 7 sulfhydryl groups per subunit monomer were titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) after denaturation with 8 m urea. In the native enzyme, modification of three sulfhydryl groups per subunit with p-chloromercuribenzoate (PCMB) led to the complete loss of enzyme actiyities for both formaldehyde and n-butanol. Hydrogen-peroxide competitively inhibited the enzyme activity for formaldehyde, while it was only slightly inhibitory to the activity for n-butanol. Both formaldehyde and hydrogen-peroxide protected one sulfhydryl group per subunit monomer from modification with PCMB. Moreover, hydrogen-peroxide was hardly reactive to the enzyme which was preincubated with formaldehyde.

From these observations, we conclude that one of three PCMB-reactive sulfhydryl groups is essential for the binding of formaldehyde, and hydrogen-peroxide modifies this sulfhydryl group.  相似文献   
78.
The activity of nitrogenase and the concentration of ammonia and allantoin (+ allantoic acid) in root nodules were measured throughout the growth period of soybean plants. Nitrogenase activity measured by acetylene reduction increased with plant growth and reached a maximum level at the flowering period. The level of ammonia and allantoin concentration in nodules was parallel with increased nitrogenase activity. At the late reproductive stage (pod-forming period), nitrogenase activity showed a marked decrease, but the ammonia and allantoin in the nodules remained at a constant level. Detached nodules from 56 day-old soybean plants were exposed to 15N2 gas, and the distribution of 15N among nitrogen compounds was investigated. Enrichment of 15N in allantoin and allantoic acid reached a fairly high level after 90 min of nitrogen fixation; ca. 22% of 15N in acid-soluble nitrogen compounds was incorporated into allantoin + allantoic acid. In contrast, enrichment of 15N in amide nitrogen was relatively low. No significant 15N was detected in the RNA fraction. The data suggested that ureide formation in nitrogen-fixing root nodules did not take place through the breakdown of nucleic acids, but directly associated with the assimilating system of biologically fixed nitrogen.  相似文献   
79.
Studies on lipopolysaccharide (LPS) from the cells of Proteus mirabilis RMS-203 were focused upon reduction of lethal toxicity and of pyrogenicity by biological and chemical modification. A heptoseless mutant, strain N-434, was isolated by the use of phage resistancy as a tool. LPS from that heptoseless mutant was completely deficient in neutral sugars and mainly composed of 2-keto-deoxy-octonic acid (KDO), glucosamine and fatty acids. It revealed almost the same antitumor activity as LPS of the wild type but it was less toxic and less pyrogenic.

Hydroxylaminolysis and reduction with LiAlH4 resulted in removal of fatty acids from LPS accompanied with decrease in lethal toxicity and antitumor acitivity but not in pyrogenicity.

Lipid A fractions showed almost the same antitumor activity as intact LPS but less lethality and less pyrogenicity.  相似文献   
80.
Chitin deacetylase (CDA), the enzyme that catalyzes the hydrolysis of acetamido groups of GlcNAc in chitin, was purified from culture filtrate of the fungus Mortierella sp. DY-52 and characterized. The extracellular enzyme is likely to be a highly N-glycosylated protein with a pI of 4.2–4.8. Its apparent molecular weight was determined to be about 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) and 67 kDa by size-exclusion chromatography. The enzyme had an optimum pH of 6.0 and an optimum temperature of 60 °C. Enzyme activity was slightly inhibited by 1–10 mM Co2+ and strongly inhibited by 10 mM Cu2+. It required at least two GlcNAc residues for catalysis. When (GlcNAc)6 was used as substrate, K m and V max were determined to be 1.1 mM and 54.6 μmol min?1 respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号