全文获取类型
收费全文 | 569篇 |
免费 | 85篇 |
国内免费 | 97篇 |
专业分类
751篇 |
出版年
2024年 | 8篇 |
2023年 | 18篇 |
2022年 | 16篇 |
2021年 | 24篇 |
2020年 | 21篇 |
2019年 | 30篇 |
2018年 | 26篇 |
2017年 | 24篇 |
2016年 | 24篇 |
2015年 | 32篇 |
2014年 | 46篇 |
2013年 | 46篇 |
2012年 | 25篇 |
2011年 | 30篇 |
2010年 | 21篇 |
2009年 | 26篇 |
2008年 | 51篇 |
2007年 | 38篇 |
2006年 | 34篇 |
2005年 | 24篇 |
2004年 | 26篇 |
2003年 | 30篇 |
2002年 | 20篇 |
2001年 | 10篇 |
2000年 | 6篇 |
1999年 | 9篇 |
1998年 | 10篇 |
1997年 | 9篇 |
1996年 | 8篇 |
1995年 | 8篇 |
1994年 | 11篇 |
1993年 | 6篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1989年 | 6篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1979年 | 1篇 |
1973年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有751条查询结果,搜索用时 31 毫秒
51.
在动物生境研究中,移动生境和卧息生境是生境研究的焦点。开展移动生境和卧息生境选择,并在此基础上进行生境评价,有利于深入了解动物对移动和卧息生境条件的需求,制定科学合理的栖息地保护计划。以东北虎(Panthera tigris altaica)的主要猎物物种之一-狍(Capreolus pygargus)为研究对象,于2017-2019年冬季积雪覆盖期在老爷岭南部通过随机布设28个大样方和84条用于足迹链跟踪的样线收集狍的移动点和卧息点信息,再结合近年来收集的东北虎出现点,利用广义可加模型(GAM)和最大熵模型(MaxEnt)进行狍移动、卧息生境选择及评价研究。移动生境选择研究表明,狍在移动的过程中偏好选择坡度小、距农田距离>500 m、远离道路、居民点和低海拔或较高海拔的区域;移动生境评价分析表明,移动适宜和次适宜生境面积之和为1318.16 km2,占研究区域面积的51.28%,当加入虎活动点影响因子后,狍移动适宜和次适宜生境面积之和为901.52 km2,适宜和次适宜生境面积之和减少了31.61%。狍卧息生境选择研究表明,水源、农田、道路和雪深是影响狍卧息的关键因素,其中雪深对狍卧息生境选择的贡献率达到70.13%;卧息生境评价表明,卧息适宜和次适宜生境面积之和为1243.77 km2,占研究区域面积的48.39%,当加入虎出现点因子后,适宜生境和次适宜生境面积之和减少了61.00%,仅为485.02 km2。研究认为,虎的出现对狍移动和卧息生境选择均产生影响,虎的活动及捕食行为可能会减少狍的活动范围和频次,狍远离虎活动区域卧息休息,压缩了狍适宜卧息的空间。 相似文献
52.
Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure‐guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs. Proteins 2014; 82:1947–1959. © 2014 Wiley Periodicals, Inc. 相似文献
53.
基于多判据决策的水体营养状态评价 总被引:2,自引:0,他引:2
为了准确地评价水生态系统营养状态和综合决策,通过最大熵原理耦合模糊性与随机性,建立了最大熵模糊评价模型(FAME);利用逼近理想解排序法(TOPSIS),以待决策水体样本的实测值为理想解,以评价结果中与实测值相差最大的为负理想解,建立了多判据决策模型(MCDM).经12个湖泊实测数据验证,最大熵模糊评价与随机评价、模糊评价和灰色评价的结果较为一致,但提高了评价水体营养状态问题各层次的分辨力.多判据决策模型可解决多种方法评价结果不相容问题,使评价结果更接近水体实际情况.FAME和MCDM适用于各种水质的综合评价及决策. 相似文献
54.
Theodore S. Jennaro Matthew R. Beaty Neşe Kurt‐Yilmaz Benjamin L. Luskin Silvia Cavagnero 《Proteins》2014,82(10):2318-2331
Proteins are biosynthesized from N to C terminus before they depart from the ribosome and reach their bioactive state in the cell. At present, very little is known about the evolution of conformation and the free energy of the nascent protein with chain elongation. These parameters critically affect the extent of folding during ribosome‐assisted biosynthesis. Here, we address the impact of vectorial amino acid addition on the burial of nonpolar surface area and on the free energy of native‐like structure formation in the absence of the ribosomal machinery. We focus on computational predictions on proteins bearing the globin fold, which is known to encompass the 3/3, 2/2, and archaeal subclasses. We find that the burial of nonpolar surface increases progressively with chain elongation, leading to native‐like conformations upon addition of the last C‐terminal residues, corresponding to incorporation of the last two helices. Additionally, the predicted folding entropy for generating native‐like structures becomes less unfavorable at nearly complete chain lengths, suggesting a link between the late burial of nonpolar surface and water release. Finally, the predicted folding free energy takes a progressive favorable dip toward more negative values, as the chain gets longer. These results suggest that thermodynamic stabilization of the native structure of newly synthesized globins during translation in the cell is significantly enhanced as the chain elongates. This is especially true upon departure of the last C‐terminal residues from the ribosomal tunnel, which hosts ca., 30–40 amino acids. Hence, we propose that release from the ribosome is a crucial step in the life of single‐domain proteins in the cell. Proteins 2014; 82:2318–2331. © 2014 Wiley Periodicals, Inc. 相似文献
55.
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV-1) protease, designated QF34, potently inhibits the wild-type and drug-resistant enzyme. To explain its broad activity, the binding of QF34 to the wild-type HIV-1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics-generalized Born surface area (MM-GBSA) methodology using three protocols. The most consistent results were obtained using the single-trajectory approach, due to cancellation of errors and inadequate sampling in the separate-trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main-chain:side-chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad-specificity second-generation HIV-1 protease inhibitors. 相似文献
56.
Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme
Warwicker J 《Protein science : a publication of the Protein Society》2004,13(10):2793-2805
Ionizable groups play critical roles in biological processes. Computation of pK(a)s is complicated by model approximations and multiple conformations. Calculated and experimental pK(a)s are compared for relatively inflexible active-site side chains, to develop an empirical model for hydration entropy changes upon charge burial. The modification is found to be generally small, but large for cysteine, consistent with small molecule ionization data and with partial charge distributions in ionized and neutral forms. The hydration model predicts significant entropic contributions for ionizable residue burial, demonstrated for components in the pyruvate dehydrogenase complex. Conformational relaxation in a pH-titration is estimated with a mean-field assessment of maximal side chain solvent accessibility. All ionizable residues interact within a low protein dielectric finite difference (FD) scheme, and more flexible groups also access water-mediated Debye-Hückel (DH) interactions. The DH method tends to match overall pH-dependent stability, while FD can be more accurate for active-site groups. Tolerance for side chain rotamer packing is varied, defining access to DH interactions, and the best fit with experimental pK(a)s obtained. The new (FD/DH) method provides a fast computational framework for making the distinction between buried and solvent-accessible groups that has been qualitatively apparent from previous work, and pK(a) calculations are significantly improved for a mixed set of ionizable residues. Its effectiveness is also demonstrated with computation of the pH-dependence of electrostatic energy, recovering favorable contributions to folded state stability and, in relation to structural genomics, with substantial improvement (reduction of false positives) in active-site identification by electrostatic strain. 相似文献
57.
Baerga-Ortiz A Bergqvist S Mandell JG Komives EA 《Protein science : a publication of the Protein Society》2004,13(1):166-176
Thrombin binds thrombomodulin (TM) at anion binding exosite 1, an allosteric site far from the thrombin active site. A monoclonal antibody (mAb) has been isolated that competes with TM for binding to thrombin. Complete binding kinetic and thermodynamic profiles for these two protein-protein interactions have been generated. Binding kinetics were measured by Biacore. Although both interactions have similar K(D)s, TM binding is rapid and reversible while binding of the mAb is slow and nearly irreversible. The enthalpic contribution to the DeltaG(bind) was measured by isothermal titration calorimetry and van't Hoff analysis. The contribution to the DeltaG(bind) from electrostatic steering was assessed from the dependence of the k(a) on ionic strength. Release of solvent H(2)O molecules from the interface was assessed by monitoring the decrease in amide solvent accessibility at the interface upon protein-protein binding. The mAb binding is enthalpy driven and has a slow k(d). TM binding appears to be entropy driven and has a fast k(a). The favorable entropy of the thrombin-TM interaction seems to be derived from electrostatic steering and a contribution from solvent release. The two interactions have remarkably different thermodynamic driving forces for competing reactions. The possibility that optimization of binding kinetics for a particular function may be reflected in different thermodynamic driving forces is discussed. 相似文献
58.
The populations and transitions between Ramachandran basins are studied for combinations of the standard 20 amino acids in monomers, dimers and trimers using an implicit solvent Langevin dynamics algorithm and employing seven commonly used force-fields. Both the basin populations and inter-conversion rates are influenced by the nearest neighbor's conformation and identity, contrary to the Flory isolated-pair hypothesis. This conclusion is robust to the choice of force-field, even though the use of different force-fields produces large variations in the populations and inter-conversion rates between the dominant helical, extended beta, and polyproline II basins. The computed variation of conformational and dynamical properties with different force-fields exceeds the difference between explicit and implicit solvent calculations using the same force-field. For all force-fields, the inter-basin transitions exhibit a directional dependence, with most transitions going through extended beta conformation, even when it is the least populated basin. The implications of these results are discussed in the context of estimates for the backbone entropy of single residues, and for the ability of all-atom simulations to reproduce experimental protein folding data. 相似文献
59.
Zhou HX 《Journal of molecular biology》2003,332(1):257-264
Circular versions of a large number of proteins have been designed by connecting the N and C termini via peptide linkers. A motivation for these designs is the assumed enhancement in folding stability, because backbone cyclization reduces the chain entropy of the unfolded state. Here, it is recognized that backbone cyclization also reduces the chain entropy of a flexible peptide linker in the folded state. Specifically, the end-to-end distance of the linker is restricted to fluctuations around the average displacement between the N and C termini of the folded protein. The balance of the chain-entropy reductions in the folded and unfolded states is used to predict the change in the unfolding free energy, deltadeltaG(cycl), by backbone cyclization. Predicted values of deltadeltaG(cycl) are in quantitative agreement with results of a careful study on cyclizing the 34 residue PIN1 WW domain by linkers with two to seen residues. The experimental results of an optimal linker length l=4 and a maximum stabilization of 1.7 kcal/mol are reproduced. Calculations of deltadeltaG(cycl) for a broad selection of circular proteins suggest that the stabilizing effect of backbone cyclization is modest, reflecting entropy reductions in both the unfolded and the folded states. 相似文献
60.
Jiang X Farid H Pistor E Farid RS 《Protein science : a publication of the Protein Society》2000,9(2):403-416
A new computer program (CORE) is described that predicts core hydrophobic sequences of predetermined target protein structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to free energies of unfolding (deltaGu), melting temperatures (Tm), and cooperativity. Metropolis-driven simulated annealing and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two smaller proteins tested (Gbeta1, 11 core amino acids; 434 cro, 10 core amino acids), the native sequence was regenerated as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two larger proteins tested (myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids), sequences with corresponding side-chain conformations remarkably similar to that of native were predicted. 相似文献