首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10151篇
  免费   2054篇
  国内免费   1455篇
  13660篇
  2024年   70篇
  2023年   482篇
  2022年   315篇
  2021年   421篇
  2020年   774篇
  2019年   744篇
  2018年   691篇
  2017年   744篇
  2016年   702篇
  2015年   696篇
  2014年   716篇
  2013年   756篇
  2012年   538篇
  2011年   506篇
  2010年   489篇
  2009年   621篇
  2008年   594篇
  2007年   531篇
  2006年   454篇
  2005年   421篇
  2004年   354篇
  2003年   252篇
  2002年   222篇
  2001年   187篇
  2000年   207篇
  1999年   140篇
  1998年   146篇
  1997年   92篇
  1996年   106篇
  1995年   114篇
  1994年   85篇
  1993年   60篇
  1992年   47篇
  1991年   38篇
  1990年   31篇
  1989年   21篇
  1988年   27篇
  1987年   22篇
  1986年   29篇
  1985年   23篇
  1984年   22篇
  1983年   24篇
  1982年   38篇
  1981年   18篇
  1980年   29篇
  1979年   27篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Freshwater fish face a variety of spatiotemporal thermal challenges throughout their life. On a broad scale, temperature is an important driver of physiological, behavioural and ecological patterns and ultimately affects populations and overall distribution. These broad patterns are partly underpinned by the small-scale local effects of temperature on individuals within the population. Climate change is increasing the range of daily thermal variation in most freshwater ecosystems, altering behaviour and performance of resident fishes. The aim of this review is understanding how daily thermal variation in temperate rivers affects individual fish physiology, behaviour and overall performance. The following are highlighted in this study: (a) the physical characteristics of rivers that can either buffer or exacerbate thermal variability, (b) the effects of thermal variability on growth and metabolism, (c) the approaches for quantifying thermal variation and thermal stress and (d) how fish may acclimatize or adapt to our changing climate.  相似文献   
992.
Species and community-level responses to warming are well documented, with plants and invertebrates known to alter their range, phenology or composition as temperature increases. The effects of warming on biotic interactions are less clearly understood, but can have consequences that cascade through ecological networks. Here, we used a natural soil temperature gradient of 5–35°C in the Hengill geothermal valley, Iceland, to investigate the effects of temperature on plant community composition and plant–invertebrate interactions. We quantified the level of invertebrate herbivory on the plant community across the temperature gradient and the interactive effects of temperature, plant phenology (i.e. development stage) and vegetation community composition on the probability of herbivory for three ubiquitous plant species, Cardamine pratensis, Cerastium fontanum and Viola palustris. We found that the percentage cover of graminoids and forbs increased, while the amount of litter decreased, with increasing soil temperature. Invertebrate herbivory also increased with soil temperature at the plant community level, but this was underpinned by different effects of temperature on herbivory for individual plant species, mediated by the seasonal development of plants and the composition of the surrounding vegetation. This illustrates the importance of considering the development stage of organisms in climate change research given the variable effects of temperature on susceptibility to herbivory at different ontogenetic stages.  相似文献   
993.
Ecological systems can show complex and sometimes abrupt responses to environmental change, with important implications for their resilience. Theories of alternate stable states have been used to predict regime shifts of ecosystems as equilibrium responses to sufficiently slow environmental change. The actual rate of environmental change is a key factor affecting the response, yet we are still lacking a non-equilibrium theory that explicitly considers the influence of this rate of environmental change. We present a metacommunity model of predator–prey interactions displaying multiple stable states, and we impose an explicit rate of environmental change in habitat quality (carrying capacity) and connectivity (dispersal rate). We study how regime shifts depend on the rate of environmental change and compare the outcome with a stability analysis in the corresponding constant environment. Our results reveal that in a changing environment, the community can track states that are unstable in the constant environment. This tracking can lead to regime shifts, including local extinctions, that are not predicted by alternative stable state theory. In our metacommunity, tracking unstable states also controls the maintenance of spatial heterogeneity and spatial synchrony. Tracking unstable states can also lead to regime shifts that may be reversible or irreversible. Our study extends current regime shift theories to integrate rate-dependent responses to environmental change. It reveals the key role of unstable states for predicting transient dynamics and long-term resilience of ecological systems to climate change.  相似文献   
994.
The response of trees to rising atmospheric CO2 concentration ([CO2]) is of concern to forest ecologists and global carbon modellers and is the focus of an increasing body of research work. I review studies published up to May 1994, and several unpublished works, which reported at least one of the following: net CO2 assimilation (A), stomatal conductance (gs), leaf dark respiration (Rd) leaf nitrogen or specific leaf area (SLA) in woody plants grown at <400 μmol mol?1 CO2 or at 600–800 μmol mol?1 CO2. The resulting data from 41 species were categorized according to growth conditions (unstressed versus stressed), length of CO2 exposure, pot size and exposure facility [growth chamber (GC), greenhouse (GH), or open-top chamber (OTC)] and interpreted using meta-analytic methods. Overall, A showed a large and significant increase at elevated [CO2] but length of CO2 exposure and the exposure facility were important modifiers of this response. Plants exposed for < 50 d had a significantly greater response, and those from GCs had a significantly lower response than plants from longer exposures or from OTC studies. Negative acclimation of A was significant and general among stressed plants, but in unstressed plants was influenced by length of CO2 exposure, the exposure facility and/or pot size. Growth at elevated [CO2] resulted in moderate reductions in gs in unstressed plants, but there was no significant effect of CO2 on gs in stressed plants. Leaf dark respiration (mass or area basis) was reduced strongly by growth at high [CO2] > while leaf N was reduced only when expressed on a mass basis. This review is the first meta-analysis of elevated CO2 studies and provides statistical confirmation of several general responses of trees to elevated [CO2]. It also highlights important areas of continued uncertainty in our understanding of these responses.  相似文献   
995.
Abstract.
  • 1 There was little overlap in the species composition of carabid beetle assemblages sampled below 450 m and above 800 m on an altitude transect and the first axis of a DECORANA ordination was closely correlated with altitude (r11= 0.93, P < 0.001), probably reflecting the differing temperature requirements of different species.
  • 2 Life-cycle strategies of two low-altitude species, found predominantly below 600 m, and two species caught above 600 m a.s.l., have been determined, using mandible wear to identify whether the females breed in the calendar year that they emerge as adults or in the year following.
  • 3 Nebria salina has an annual cycle at 630 m. Pterostichus madidus and Calathus fuscipes were both biennial at altitudes above 300 m although predominantly annual at low altitude. N.gyllenhali was biennial above 600 m and it is not known whether it is able to switch to an annual cycle at low altitude.
  • 4 Both N.salina and N.gyllenhali ceased activity soon after emergence, an adaptation which preserves their mandibles from wear.
  • 5 At altitudes of 305 m and 430 m, P.madidus and C.fuscipes entered the breeding season with 33% and 56% reduction in mandible tip length, possibly reducing their reproductive output.
  • 6 The necessity for relatively sharp mandibles on entry into the breeding season may restrict the capacity of carabids to respond to a temperature change by switching from annual to biennial cycles, and vice versa, adding support to the suggestion that carabids are more likely to respond to climate change by shifting distributions than by physiological adaptation.
  相似文献   
996.
Interaction between a 70-amino acid and zinc-binding polypeptide from the regulatory chain and the catalytic (C) trimer of aspartate transcarbamoylase (ATCase) leads to dramatic changes in enzyme activity and affinity for active site ligands. The hypothesis that the complex between a C trimer and 3 polypeptide fragments (zinc domain) is an analog of R state ATCase has been examined by steady-state kinetics, heavy-atom isotope effects, and isotope trapping experiments. Inhibition by the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate (PALA), or the substrate analog, succinate, at varying concentrations of substrates, aspartate, or carbamoyl phosphate indicated a compulsory ordered kinetic mechanism with carbamoyl phosphate binding prior to aspartate. In contrast, inhibition studies on C trimer were consistent with a preferred order mechanism. Similarly, 13C kinetic isotope effects in carbamoyl phosphate at infinite aspartate indicated a partially random kinetic mechanism for C trimer, whereas results for the complex of C trimer and zinc domain were consistent with a compulsory ordered mechanism of substrate binding. The dependence of isotope effect on aspartate concentration observed for the Zn domain-C trimer complex was similar to that obtained earlier for intact ATCase. Isotope trapping experiments showed that the compulsory ordered mechanism for the complex was attributable to increased "stickiness" of carbamoyl phosphate to the Zn domain-C trimer complex as compared to C trimer alone. The rate of dissociation of carbamoyl phosphate from the Zn domain-C trimer complex was about 10(-2) that from C trimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
997.
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
998.
The impact of climate change on herbivorous insects can have far‐reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The experiment was established in 2005 as a full factorial split‐plot with 6 blocks × 2 levels of CO2 × 2 levels of warming × 2 levels of drought = 48 plots. In 2008, we exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis Thomson ), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under the drought treatment, and there was a three‐way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co‐acting factors and were mediated by changes in plant secondary compounds, nitrogen, and water content. Overall, drought was the most important factor for this insect herbivore. Our study shows that weight and survival of insect herbivores may decline under future climate. The complexity of insect herbivore responses increases with the number of combined climate change drivers.  相似文献   
999.
The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate‐change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2‐year field experiment under three N applications. The Hybrid‐Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha?1 yr?1 with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid‐1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain‐filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade‐off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting climate factors specifically.  相似文献   
1000.
Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975–1996 and 1996–2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium‐resolution data on total farmland area changes were used in a spatially explicit assessment of the land‐use transitions that occurred in Brazil during 1960–2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land‐use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land‐use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land‐use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center‐western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be effective. This can improve the prospects for protecting native vegetation by investing in agricultural intensification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号