首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1937篇
  免费   152篇
  国内免费   171篇
  2023年   44篇
  2022年   48篇
  2021年   57篇
  2020年   62篇
  2019年   101篇
  2018年   77篇
  2017年   67篇
  2016年   83篇
  2015年   58篇
  2014年   93篇
  2013年   107篇
  2012年   68篇
  2011年   67篇
  2010年   61篇
  2009年   105篇
  2008年   109篇
  2007年   116篇
  2006年   100篇
  2005年   70篇
  2004年   70篇
  2003年   77篇
  2002年   77篇
  2001年   53篇
  2000年   42篇
  1999年   40篇
  1998年   32篇
  1997年   23篇
  1996年   30篇
  1995年   28篇
  1994年   22篇
  1993年   35篇
  1992年   20篇
  1991年   32篇
  1990年   20篇
  1989年   18篇
  1988年   18篇
  1987年   13篇
  1986年   16篇
  1985年   13篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   12篇
  1978年   12篇
  1977年   4篇
  1976年   8篇
  1975年   2篇
  1974年   3篇
排序方式: 共有2260条查询结果,搜索用时 15 毫秒
171.
AIMS: To isolate micro-organisms capable of utilizing polyhexamethylene biguanide (PHMB) as a sole source of nitrogen, and to demonstrate biodegradation of the biocide. METHODS AND RESULTS: Two consortia of bacteria were successfully enriched at the expense of PHMB, using sand from PHMB-treated swimming pools as inoculum. Both consortia were shown to contain bacteria belonging to the genera Sphingomonas, Azospirillum and Mesorhizobium. It was shown that the presence of both Sphingomonas and Azospirillum spp. was required for extensive growth of the consortia. In addition, the Sphingomonads were the only isolates capable of growth in axenic cultures dosed with PHMB. Using a stable isotope (15N)-labelled PHMB, metabolism of the biocide by both consortia was demonstrated. By comparing the level of 15N atom incorporation into bacterial DNA after growth on either 15N-PHMB or 15N-labelled NH4Cl, it was possible to estimate the percentage of PHMB biodegradation. CONCLUSIONS: The microbial metabolism of nitrogen from the biguanide moiety of PHMB has been demonstrated. It was revealed that Sphingomonas and Azospirillum spp. are the principal organisms responsible for growth at the expense of PHMB. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the microbial metabolism of PHMB.  相似文献   
172.
The peak interval (PI) procedure is commonly used to evaluate animals' ability to produce timed intervals. It consists of presenting fixed interval (FI) schedules in which some of the trials are replaced by extended non-reinforced trials. Responding will often resume (resurge) at the end of the non-reinforced trials unless precautions are taken to prevent it. Response resurgence was replicated in rats and pigeons. Variation of the durations of the FI and the non-reinforced probe trials showed it to be dependent on the time when reinforcement is expected. Timing of both the normal time to reinforcement, and the subsequent time to reinforcement during the probe trials followed Weber's law. A quantitative model of resurgence is described, suggesting how animals respond to the signaling properties of reinforcement omission. Model results were simulated using a stochastic binary counter.  相似文献   
173.
The ex situ population of maned wolves is not self‐sustaining due to poor reproduction, caused primarily by parental incompetence. Studies have shown that environmental enrichment can promote natural parental behaviors in zoo animals. The objective of this study was to determine the effects of environmental enrichment on behavioral and physiological responses of maned wolves. During an 8‐week experimental period, daily behavior observations and fecal sample collection were conducted on four adult wolves (2.2) individually housed in environments without enrichment. After 2 weeks, the wolves were chronologically provided with 2‐week intervals of hiding dead mice around the exhibit, no enrichment, and introduction of boomer balls. Responses of the wolves to enrichment were assessed based on activity levels and exploratory rates, as well as the level of corticoid metabolites in fecal samples collected daily throughout the study period. Providing wolves with environmental enrichment significantly increased exploratory behaviors (P<0.05), especially when mice were hidden in the enclosure. Fecal corticoid concentrations were increased during periods of enrichment in males (P<0.05), but not in females. Overall, there were no correlations between behavioral responses to enrichment and fecal corticoid levels. Behavioral results suggest that environmental enrichment elicits positive effects on the behavior of captive maned wolves. There is evidence suggesting that providing animals with ability to forage for food is a more effective enrichment strategy than introducing objects. There is need for a longer term study to determine the impact of environmental enrichment in this species. Zoo Biol 26:331–343, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   
174.
The prokaryotic diversity of culturable thermophilic communities of deep-sea hydrothermal chimneys was analysed using a continuous enrichment culture performed in a gas-lift bioreactor, and compared to classical batch enrichment cultures in vials. Cultures were conducted at 60 degrees C and pH 6.5 using a complex medium containing carbohydrates, peptides and sulphur, and inoculated with a sample of a hydrothermal black chimney collected at the Rainbow field, Mid-Atlantic Ridge, at 2,275 m depth. To assess the relevance of both culture methods, bacterial and archaeal diversity was studied using cloning and sequencing, DGGE, and whole-cell hybridisation of 16S rRNA genes. Sequences of heterotrophic microorganisms belonging to the genera Marinitoga, Thermosipho, Caminicella (Bacteria) and Thermococcus (Archaea) were obtained from both batch and continuous enrichment cultures while sequences of the autotrophic bacterial genera Deferribacter and Thermodesulfatator were only detected in the continuous bioreactor culture. It is presumed that over time constant metabolite exchanges will have occurred in the continuous enrichment culture enabling the development of a more diverse prokaryotic community. In particular, CO(2) and H(2) produced by the heterotrophic population would support the growth of autotrophic populations. Therefore, continuous enrichment culture is a useful technique to grow over time environmentally representative microbial communities and obtain insights into prokaryotic species interactions that play a crucial role in deep hydrothermal environments.  相似文献   
175.
176.
Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2.Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi).Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers.Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves.  相似文献   
177.
A new method for the determination of Cu(II) and Pb(II) by flame atomic absorption spectrometry (FAAS) after preconcentrating on a column containing Anoxybacillus sp. SO B1–immobilized Amberlite XAD-16 was developed. The functional groups of Anoxybacillus sp. SO B1 immobilized on Amberlite XAD-16 were characterized in KBr tablets by Fourier transform infrared (FT-IR) spectrometry. Various parameters such as pH, amount of the adsorbent, eluent type and volume, and flow rate of the sample solution were studied. The optimum pH values of quantitative sorption for Cu(II) and Pb(II) were found to be pH 7.0 and 5.0 and Cu(II) and Pb(II) ions could be quantitatively eluted with 5.0 ml of 1.0 mol L?1 HCI and 10.0 ml of 0.25 mol L?1 HNO3, respectively. Recoveries of Cu(II) and Pb(II) were found to be 100.9 ± 1.57% and 100.3 ± 0.49% (N = 5), the limits of detection of Cu(II) and Pb(II) in the determination by FAAS (3 s, N = 10) were found to be 0.8 and 1.6 μg L?1, respectively. The proposed enrichment method was applied for metal ion determination from water samples such as two parts of Tigris River water in Diyarbak?r and Elaz??, Lake of Hazar in Elaz??, and tap water in Diyarbak?r. Furthermore, the accuracy of the proposed method was verified by studying the analytical recovery and by analyzing certified reference material (NCS-DC 73350 leaves of poplar).  相似文献   
178.
The current gold standard method for methylome analysis is whole-genome bisulfite sequencing (WGBS), but its cost is substantial, especially for the purpose of multi-sample comparison of large methylomes. Shotgun bisulfite sequencing of target-enriched DNA, or targeted methylome sequencing (TMS), can be a flexible, cost-effective alternative to WGBS. However, the current TMS protocol requires a considerable amount of input DNA and hence is hardly applicable to samples of limited quantity. Here we report a method to overcome this limitation by using post-bisulfite adaptor tagging (PBAT), in which adaptor tagging is conducted after bisulfite treatment to circumvent bisulfite-induced loss of intact sequencing templates, thereby enabling TMS of a 100-fold smaller amount of input DNA with far fewer cycles of polymerase chain reaction than in the current protocol. We thus expect that the PBAT-mediated TMS will serve as an invaluable method in epigenomics.  相似文献   
179.
Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free‐air CO2 enrichment (FACE) technology was used to target atmospheric [CO2] to 200 μmol mol?1 above ambient [CO2] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas‐exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season‐long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down‐regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2] unless appropriate adaptation traits can be introduced into future cultivars.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号