首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8145篇
  免费   1040篇
  国内免费   615篇
  2024年   25篇
  2023年   138篇
  2022年   178篇
  2021年   224篇
  2020年   347篇
  2019年   394篇
  2018年   427篇
  2017年   348篇
  2016年   395篇
  2015年   356篇
  2014年   382篇
  2013年   621篇
  2012年   253篇
  2011年   370篇
  2010年   307篇
  2009年   390篇
  2008年   403篇
  2007年   390篇
  2006年   384篇
  2005年   355篇
  2004年   280篇
  2003年   273篇
  2002年   271篇
  2001年   188篇
  2000年   171篇
  1999年   152篇
  1998年   190篇
  1997年   159篇
  1996年   126篇
  1995年   147篇
  1994年   145篇
  1993年   95篇
  1992年   111篇
  1991年   94篇
  1990年   73篇
  1989年   98篇
  1988年   65篇
  1987年   56篇
  1986年   58篇
  1985年   65篇
  1984年   60篇
  1983年   33篇
  1982年   46篇
  1981年   30篇
  1980年   40篇
  1979年   29篇
  1978年   9篇
  1977年   19篇
  1976年   13篇
  1975年   6篇
排序方式: 共有9800条查询结果,搜索用时 15 毫秒
71.
Abstract. Flux densities of water vapour and carbon dioxide were measured for a Mediterranean macchia canopy. Results show good agreement between the measured available energy and the sum of latent sensible and heat flux densities determined with the eddy correlation technique. Joint evaluation of the Bowen ratio, aerodynamic resistance, canopy resistance and the 'omega factor' suggests that the macchia canopy is intermediate in aerodynamic roughness between coniferous and deciduous canopies. Maximum daytime carbon flux densities ranged from -14 to -22(μnol m−2 s−1 on a ground area basis. The ratio of transpiration to assimilation (E/A) was a function of incident photo-synthetic photon flux density below about 400 μmol m−2s−1 and above it was fairly constant at 272 mol mol−1 (H2O/CO2). The relationship between carbon influx and canopy conductance was linear. Results show promising applications of the eddy correlation technique for evaluating physiological features of canopies, treated as unitary functional systems.  相似文献   
72.
The initial (F0), maximal (FM) and steady-state (FS) levels of chlorophyll fluorescence emitted by intact pea leaves exposed to various light intensities and environmental conditions, were measured with a modulated fluorescence technique and were analysed in the context of a theory for the energy fluxes within the photochemical apparatus of photosynthesis. The theoretically derived expressions of the fluorescence signals contain only three terms, X=J2p2F/(1–G), Y=T/(1–G) and V, where V is the relative variable fluorescence, J2 is the light absorption flux in PS II, p2F is the probability of fluorescence from PS II, G and T are, respectively, the probabilities for energy transfer between PS II units and for energy cycling between the reaction center and the chlorophyll pool: F0=X, FM=X/(1–Y) and FS=X(1+(YV/(1–Y))). It is demonstrated that the amplitudes of the previously defined coefficients of chlorophyll fluorescence quenching, qP and qN, reflect, not just photochemical (qP) or nonphotochemical (qN) events as implied in the definitions, but both photochemical and nonphotochemical processes of PS II deactivation. The coefficient qP is a measure of the ratio between the actual macroscopic quantum yield of photochemistry in PS II (41-1) in a given light state and its maximal value measured when all PS II traps are open (41-2) in that state, with 41-3 and 41-4. When the partial connection between PS II units is taken into consideration, 1-qP is nonlinearily related to the fraction of closed reaction centers and is dependent on the rate constants of all (photochemical as well as nonphotochemical) exciton-consuming processes in PS II. On the other hand, 1-qN equals the (normalized) ratio of the rate constant of photochemistry (k2b) to the combined rate constant (kN) of all the nonphotochemical deactivation processes excluding the rate constant k22 of energy transfer between PS II units. It is demonstrated that additional (qualitative) information on the individual rate constants, kN-k22 and k2b, is provided by the fluorescence ratios 1/FM and (1/F0)–(1/FM), respectively. Although, in theory, 41-5 is determined by the value of both k2b and kN-k22, experimental results presented in this paper show that, under various environmental conditions, 41-6 is modulated largely through changes in k N, confirming the idea that PS II quantum efficiency is dynamically regulated in vivo by nonphotochemical energy dissipation.Abbreviations Chl chlorophyll - F0, FM and FS initial, maximal and steady-state levels of modulated Chl fluorescence emitted by light-adapted leaves - PS I and II photosystem I and II - qP and qN (previously defined) photochemical and nonphotochemical components of Chl fluorescence quenching  相似文献   
73.
高原鼢鼠挖掘取食活动的能量代价及其最佳挖掘取食行为   总被引:3,自引:1,他引:2  
高原鼢鼠(Myospalax baileyi)是青藏高原典型的地下鼠,它主要挖掘取食杂类草之地下根茎,在挖掘过程中形成取食洞道。本文根据此特点,建立了挖掘取食过程中能量代价(E_(?))与取食道结构参数(土丘间距S、侧道长L、取食道半径b及洞道深度D)之间以及取食获能E_(fg)与S和b之间的两个函数关系。分别以挖掘效率极大和取食效率极大为优化目标,导出同样的结果,即相同的最佳土丘间距S_(opt)。通过实验观测,计算出在矮嵩草(Kobresiahumilis)草甸生境条件下,最佳土丘间距S_(opt)=127.4厘米,与野外实测土丘间距(126.30±47.85厘米)无显著差异(t=0.312,P>0.50),表明高原鼢鼠的挖掘及取食行为符合最佳化原则。  相似文献   
74.
The energy status of mammalian cells is a finely regulated phenomenon. This is especially true in cardiac muscle cells in which energy requirements are high and the system must provide rapid turnover of the adenine nucleotides and instant response to changes in energetic demands. We have examined the acute response of the rat myocardium to ventricular pacing up to 2.5 times the resting heart rate. The purpose of this study was to determine at what level of pacing the normal energy status could be maintained and at what point it was compromised. Myocardial energy charge (EC = (ATP + 0.5 ADP)/(ATP + ADP + AMP)) was maintained at 1, 1.5 and 2 times the resting heart rate but declined significantly at 2.5 times. In contrast, phosphorylation potential (PP = ATP/ADP1 × Pi) was drastically altered in hearts paced at 1.5, 2 and 2.5 times the resting rate. Tissue lactate increased and glycogen decreased in a linear fashion as pacing rate increased, indicating that the metabolic challenge was proportional to the pacing rate. EC seems to reflect the overall status of the cell and its ability to maintain a dynamic equilibrium. PP may reflect the immediate and necessary driving force for mitochondrial respiration in times of increased demand. These data suggest that the myocardium may meet the increased energy demands of acute ventricular pacing by shifting the molar ratio of ATP to ADP times Pi in favour of driving phosphorylation.  相似文献   
75.
The thermodynamic treatment of the disproportionation reaction of adenosine 5′-diphosphate to adenosine 5′-triphosphate and adenosine 5′-monophosphate is discussed in terms of an equilibrium model which includes the effects of the multiplicity of ionic and metal bound species and the presence of long range electrostatic and short range repulsive interactions. Calculated quantities include equilibrium constants, enthalpies, heat capacities, entropies, and the stoichiometry of the overall reaction. The matter of how these calculations can be made self-consistent with respect to both calculated values of the ionic strength and the molality of the free magnesium ion is discussed. The thermodynamic data involving proton and magnesium-ion binding data for the nucleotides involved in this reaction have been evaluated.  相似文献   
76.
Factors influencing nitrate depletion in a rural stream   总被引:3,自引:3,他引:0  
Alan R. Hill 《Hydrobiologia》1988,160(2):111-122
A mass balance procedure was used to analyze rates of nitrate depletion in three adjacent reaches of West Duffin Creek, Ontario, Canada. Daily nitrate losses in individual reaches were highly variable (0.5–24 kg N) during low and moderate stream flows in May–October, 1982–1985. Nitrate removal efficiency (nitrate loss as a % of nitrate input) showed a rapid exponential decline with increased nitrate inputs to each reach. Nitrate losses and nitrate removal efficiency also had a significant negative correlation with stream discharge. The association of large nitrate loads with high stream discharge reduced the nitrate removal capacity of the stream because of shorter residence times and a higher ratio of water volume to stream bed area. Water temperature exhibited a significant positive correlation with nitrate loss which may reflect increased denitrification at higher temperatures.Variations in nitrate losses and nitrate removal efficiency between the three reaches were highly influenced by differences in water residence time. Standarized nitrate losses with respect to water residence time revealed a longitudinal decline in nitrate depletion between the reaches which was associated with a downstream decrease in stream nitrate concentration and in the organic carbon content of fine textured sediments from pool habitats.  相似文献   
77.
Water hyacinth productivity and detritus accumulation   总被引:2,自引:1,他引:1  
Water hyacinth [Eichhornia crassipes (Mart) Solms] productivity and detritus accumulation were evaluated in eutrophic lake water with and without added nutrients (fertilized and control reservoirs, respectively). Seasonal changes in plant productivity and detritus accumulation were determined at monthly intervals for one year. Significant differences were observed in plant productivity between seasons and nutrient additions. Seasonal plant productivity ranged from 1.9 to 23.1 mg (dry wt) ha−1 for the fertilized reservoir and −0.2 to 10.2 mg ha−1 for the control reservoir. Detritus accumulation was not significantly different between seasons or nutrient additions. Seasonal N assimilation by plants ranged from 34 to 242 kg N ha−1 for plants in the fertilized reservoir and < 0 to 104 kg N ha−1 for plants in the control reservoir. Annual net N recovered in detritus represented 21 and 28% of the total N removed by plants in the fertilized and control reservoirs, respectively. Net N loading to the reservoirs from detritus was 92 to 148 kg N ha−1 yr−1.  相似文献   
78.
79.
Summary The rates of water use and leaf surface conductance of Citrullus colocynthis (Cucurbitacea) were evaluated from measurements of the surface temperature and microenvironment of leaves. At desert sites in Saudi Arabia the transpiration rates reached 0.13–0.17 g m-2 s-1 and the leaf temperatures were always close to air temperature. Leaf models (dry) placed in the canopy were considerably warmer than the air. To investigate responses over a wider range of conditions, plants were grown in a controlled environment room. It was found that when conditions were made hotter than those that occurred in the desert, the stomatal conductance increased greatly. Transpiration rate attained 0.6 g m-2 s-1 and the leaves were up to seven degrees cooler than the air. The results suggest a finely-tuned control mechanism working like a switch when the leaves experience extreme conditions, and enabling the plant to avoid lethal temperatures.  相似文献   
80.
Summary Fertilizer/soil N balance of cropped and fallow soil has been studied in a pot experiment carried out with grey forest soil (southern part of Moscow region) at increasing rates of15N labelled ammonium sulfate (0; 8; 16; 32 mg N/100 g of soil). The fertilizer15N balance has been shown to depend upon its application rate and the presence of growing plants. Fertilizer N uptake efficiency was maximum (72.5%) and gaseous losses-minimum (12.5%) at the application rate of 16 mg N/100 g of soil. Fertilizer N losses from the fallow soil were 130–220% versus those from the cropped soil. At the application of fertilizer N the plant uptake of soil N was 170–240% and the amount of soil N as N–NH4 exchangeable + N–NO3 in fallow was 350–440% as compared to the control treatment without nitrogen (PK).After cropping without or with N fertilizer application at the rates of 8 and 32 mg N/100 g of soil, a positive nitrogen balance has been found which is likely due to nonsymbiotic (associative) N-fixation. It has been shown that biologically fixed nitrogen contributes to plant nutrition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号