首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8159篇
  免费   1038篇
  国内免费   621篇
  9818篇
  2024年   40篇
  2023年   141篇
  2022年   178篇
  2021年   224篇
  2020年   347篇
  2019年   394篇
  2018年   427篇
  2017年   348篇
  2016年   395篇
  2015年   356篇
  2014年   382篇
  2013年   621篇
  2012年   253篇
  2011年   370篇
  2010年   307篇
  2009年   390篇
  2008年   403篇
  2007年   390篇
  2006年   384篇
  2005年   355篇
  2004年   280篇
  2003年   273篇
  2002年   271篇
  2001年   188篇
  2000年   171篇
  1999年   152篇
  1998年   190篇
  1997年   159篇
  1996年   126篇
  1995年   147篇
  1994年   145篇
  1993年   95篇
  1992年   111篇
  1991年   94篇
  1990年   73篇
  1989年   98篇
  1988年   65篇
  1987年   56篇
  1986年   58篇
  1985年   65篇
  1984年   60篇
  1983年   33篇
  1982年   46篇
  1981年   30篇
  1980年   40篇
  1979年   29篇
  1978年   9篇
  1977年   19篇
  1976年   13篇
  1975年   6篇
排序方式: 共有9818条查询结果,搜索用时 9 毫秒
101.
Three-year-old Scots pine (Pinus sylvestris) trees were grown on a sandy forest soil in pots, with the objective to determine their NH4/NO3 uptake ratio and proton efflux. N was supplied in three NH4-N/NO3-N ratios, 3:1, 1:1 and 1:3, either as 15NH4+14NO3 or as 14NH4+15NO3. Total N and 15N acquisition of different plant parts were measured. Averaged over the whole tree, the NH4/NO3 uptake ratios throughout the growing season were found to be 4.2, 2.5, and 1.5 for the three application ratios, respectively. The excess cation-over-anion uptake value (Ca-Aa) appeared to be linearly related to the natural logarithm of the NH4/NO3 uptake ratio. Further, this uptake ratio was related to the NH4/NO3 ratio of the soil solution. From these relationship it was estimated that Scots pine exhibits an acidifying uptake pattern as long as the contribution of nitrate to the N nutrition is lower than 70%. Under field circumstances root uptake may cause soil acidification in the topsoil, containing the largest part of the root system, and soil alkalization in deeper soil layers.  相似文献   
102.
Living matter is an organized system which requires a continual flux of energy for its survival. As a working assumption, the flux of energy required for the origin of a self-duplicating cell is taken as the power required for the maintenance of a modern cell: 10 mW per g of carbon or some 105 times the output per gram of the sun. Solar photochemistry supplies the energy for the continuing evolution of life and, by continuity, for its origin. The iron oxide-sulfide photosynthetic unit proposed by S. Granick 35 years ago was meant to supply this energy. The evolution of complex organic photosensitizers is rationalized by the Granick hypothesis that biosynthetic pathways recapitulate their evolution. These concepts are discussed in the context of the evolution of photosynthetic systems and the known properties of these pigments.  相似文献   
103.
104.
Energetic approach to the folding of alpha/beta barrels   总被引:2,自引:0,他引:2  
K C Chou  L Carlacci 《Proteins》1991,9(4):280-295
The folding of a polypeptide into a parallel (alpha/beta)8 barrel (which is also called a circularly permuted beta 8 alpha 8 barrel) has been investigated in terms of energy minimization. According to the arrangement of hydrogen bonds between two neighboring beta-strands of the central barrel therein, such an alpha/beta barrel structure can be folded into six different types: (1) left-tilted, left-handed crossover; (2) left-tilted, right-handed crossover; (3) nontilted, left-handed crossover; (4) nontilted, right-handed crossover; (5) right-tilted, left-handed crossover; and (6) right-tilted, right-handed crossover. Here "tilt" refers to the orientational relation of the beta-strands to the axis of the central beta-barrel, and "crossover" to the beta alpha beta folding connection feature of the parallel beta-barrel. It has been found that the right-tilted, right-handed crossover alpha/beta barrel possesses much lower energy than the other five types of alpha/beta barrels, elucidating why the observed alpha/beta barrels in proteins always assume the form of right tilt and right-handed crossover connection. As observed, the beta-strands in the energy-minimized right-tilted, right-handed crossover (alpha/beta)8-barrel are of strong right-handed twist. The value of root-mean-square fits also indicates that the central barrel contained in the lowest energy (alpha/beta)8 structure thus found coincides very well with the observed 8-stranded parallel beta-barrel in triose phosphate isomerase (TIM). Furthermore, an energetic analysis has been made demonstrating why the right-tilt, right-handed crossover barrel is the most stable structure. Our calculations and analysis support the principle that it is possible to account for the main features of frequently occurring folding patterns in proteins by means of conformational energy calculations even for very complicated structures such as (alpha/beta)8 barrels.  相似文献   
105.
Although great strides have been made in understanding the genetics of Duchenne muscular dystrophy (DMD), uncertainty still remains as to the metabolic changes which are associated with the disease. We have used the recently discovered animal model of DMD, the mdx mouse, to study aspects of high energy phosphate metabolism and metabiolic control indices in dystrophic muscle. This model of DMD has the dual advantage of having a genetic defect which is homologous to that in human DMD, and it lacks the fatty infiltration and ncecrosis which makes biochemical analysis of DMD so difficult. We have used nuclear magnetic resonance sperctroscopy (NMR) to monitor developmental changes in high energy phosphates and pH. No differences were observed between young (< 40–50 days old) control and mdx mice. The pH increase and alterations in phosphate ratios (i.e., decline in PCr/ATP) observed in adult mdx vs. control mice are quantilatively similar to those observed in humans. Biochemical analysis showed a small decline in ATP and PCr content and a decline in some indices of energy status in adult mdx mice. As young mdx mice appeared to be normal, the lack of dystrophin does not correlate with metabolic changes. The changes which were observed were small enough that alterations in fibre composition could be the major contributory factor.  相似文献   
106.
Pitacco  A.  Gallinaro  N.  Giulivo  C. 《Plant Ecology》1992,99(1):163-168
Actual evapotranspiration from a closed-canopy Quercus ilex L. stand has been estimated by applying the Bowen Ratio-Energy Budget method. Daily water loss was 3.5 mm day–1, with a peak rate near 0.6 mm hour–1. The phenomenon of thermal inversion, quite common in mediterranean climates, seemed to play a significant role in reducing evapotranspiration, by promoting dew formation and delaying the establishment of fluxes of latent and sensible heat away from the canopy. Dew, which may form over many hours in the night, appears to be a major sink of available energy in the early morning and may represent a useful water source for stressed foliage. The alternating processes of condensation and evaporation may have a beneficial effect on the closed stand micro-environment.  相似文献   
107.
Summary Secretion of cellulolytic activity by the mesophilClostridium strain C7 was studied while the bacterium underwent progressive carbon/energy starvation and the ensuing continuous decline in growth rate. In the slowest range of growth rates studied the organism was in full response to the global regulation imposed by guanosine 5, 3-bispyrophosphate (ppGpp). The exoenzymes of the cellulase complex were produced at the same volumetric rate whether or not the response was active. However, the volumetric rate of biomass synthesis was reduced 45% or more by the response. Energy necessary to maintain the ppGpp-regulated state (i.e., maintenance energy) was, therefore, diverted from energy going to synthesis of biomass but not from that going to exoenzyme synthesis, making the yield of cellulase activity per mole of carbon-energy substrate independent of growth rate and the exoenzyme complex produced from the substrate with equal efficiency at all growth rates. The primary consideration in improving exoenzyme productivity by bacteria with this type of energy distribution between secretion, growth, and maintenance is simply increasing yield per mole of carbon-energy substrate, with growth rate effects on yield a secondary and minimum concern.  相似文献   
108.
Synopsis Oxygen uptake (Vo 2) was measured in carp of approximately 40 cm length swimming at controlled variable oxygen tensions (Po 2). At Po 2> 120 mm Hg Vo 2 increased with an increase in swimming speed from 5.6 to 11.3 cm · sec–1. Extrapolation of Vo 2 to zero activity at Po 2 = 140 mm Hg revealed a standard O2 uptake of 36.7 ml O2 · kg–1 · h–1 at 20° C. At the lowest swimming speed (5.6 cm · s–1) the oxygen uptake increased when the water Po 2 was reduced. A near doubling in Vo 2 was seen at Po 2 = 70 mm Hg compared to 140 mm Hg. At higher swimming speeds in hypoxic water Vo 2 decreased relative to the values at low swimming speeds. As a result the slope of the lines expressing log Vo 2 as a function of swimming speed decreased from positive to negative values with decreasing Po 2 of the water. pH of blood from the caudal vein drawn before and at termination of swimming at Po 2 = 70 mm Hg and 100 mm Hg did not show any decrease in relation to rest values at Po 2 = 140 mm Hg. Blood lactate concentration did not increase during swimming at these tensions.  相似文献   
109.
The oxygen consumption and ammonia excretion of a herbivorous midge larva,Chironomus sp., inhabiting Lake Balaton was measured at two different temperatures. The loss of energy through respiration and that through ammonia excretion were calculated. The daily respiratory energy loss amounted to 655.5 ± 123.8 J g–1 at 17 °C and to 1 160.0 ± 168.4 J g–1 (dry weight) at 25 °C. Mean energy loss through ammonia excretion was about 40% less than through respiration.  相似文献   
110.
Water vapour absorption is shown to occur in 22 species of Psocoptera inhabiting diverse environments and representing all major groups of this insect order. Evidently the faculty is a common feature of the whole order and it seems not to be related to specific environmental conditions. For the first time water vapour uptake could be demonstrated in fully winged and flying insects. The critical equilibrium humidities vary considerably among different species ranging from 58 to 85% r.h. Marked interspecific differences are also observed in water loss and uptake rates but no clear correlation with habitat or systematic group is recognizable. The uptake rates of Psocoptera are among the highest of all arthropods investigated so far. From weight recordings with a sensitive microbalance it could be seen that continuous operation of the uptake mechanism is restricted to limited periods of time of less than 1 hr regardless of the water status of the animals. Initiation and termination of the uptake process are abrupt and continuous uptake proceeds at a constant rate at a given relative humidity. Uptake rates are humidity-dependent decreasing with falling relative humidity whereas the adjustment of the equilibrium level of body water is independent of ambient humidity. Equilibrium is maintained by intermittent operation of the uptake mechanism within ca. 3% of body water mass. The uptake mechanism exhibits marked sensitivity to starvation in most members of the Psocomorpha. Some features of the uptake process of Psocoptera are in close agreement with those of Mallophaga reflecting the close relationship between the two groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号