首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   5篇
  国内免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
31.
The expression of bacterial porin in outer membranes of gram-negative bacteria and of mitochondrial porin or voltage-dependent anion channel (VDAC) in outer mitochondrial membranes (OMM) of eucaryotic cells was demonstrated about 15 years ago. However, the expression of VDAC in the plasmalemma (PLM) of transformed human B lymphoblasts has recently been indicated by cytotoxicity and indirect immunofluorescence studies. New data suggest that the expression of VDAC may be even more widespread. Different cell types express porin channels in their PLM and in intracellular membranes other than OMM. The functional expression of these channels may differ in the various compartments since recent experiments have demonstrated that the voltage dependence and ion selectivity of mitochondrial VDAC may be altered by their interaction with modulators. The present paper proposes a unifying concept for the ion-selective channels of cell membranes, in particular, those whose regulation is affected in cystic fibrosis.  相似文献   
32.
The evolution of plastids has a complex and still unresolved history. These organelles originated from a cyanobacterium via primary endosymbiosis, resulting in three eukaryotic lineages: glaucophytes, red algae, and green plants. The red and green algal plastids then spread via eukaryote–eukaryote endosymbioses, known as secondary and tertiary symbioses, to numerous heterotrophic protist lineages. The number of these horizontal plastid transfers, especially in the case of red alga‐derived plastids, remains controversial. Some authors argue that the number of plastid origins should be minimal due to perceived difficulties in the transformation of a eukaryotic algal endosymbiont into a multimembrane plastid, but increasingly the available data contradict this argument. I suggest that obstacles in solving this dilemma result from the acceptance of a single evolutionary scenario for the endosymbiont‐to‐plastid transformation formulated by Cavalier‐Smith & Lee (1985). Herein I discuss data that challenge this evolutionary scenario. Moreover, I propose a new model for the origin of multimembrane plastids belonging to the red lineage and apply it to the dinoflagellate peridinin plastid. The new model has several general and practical implications, such as the requirement for a new definition of cell organelles and in the construction of chimeric organisms.  相似文献   
33.
This paper describes a mathematical simulation model of the transformation of organic matter and biogenic compounds. The model is validated with observations made on Lake Ladoga. Despite the approximate nature of the biogenic load data, a good agreement is obtained between the calculated substance concentrations and available observations made during individual seasons for different areas of the lake. The model was developed by the author Leonov and this paper presents new model results with accurate formulations for nitrogen and carbon components. Comparison with observational data base collected during 1976–1979 shows that the model results provide good simulation of the annual seasonal changes in material concentrations in the identified regions of the lake.  相似文献   
34.
Leaf disks (Betula papyrifera) were conditioned for two weeks by six species of aquatic hyphomycetes. Mass losses of the leaves were determined, and their concentrations of protein (extracted at pH 7, 10 and 12.8), phenolics (Folin-Ciocalteu and BSA-precipitation), lipids, and ergosterol (as indicator of fungal biomass) were measured. Enzymatic activities of the culture filtrates against cellulose, xylan and pectin were estimated. Gammarus tigrinis, Pycnopsyche guttifer and Tipula caloptera were given a choice of the six leaf/fungus combinations. G. tigrinus and P. guttifer consistently preferred some combinations over others; T. caloptera appeared to feed randomly. There were no significant correlations between consumption and any of the measured characteristics of leaf disks. With G. tigrinus and P. guttifer, the sequence of preference could be reproduced by extracting mycelia with non-polar solvents and applying the extracts to unconditioned leaf disks. Consumption of extract-coated disks was lower than consumption of conditioned disks. Numbers of endosymbiotic gut bacteria increased from G. tigrinus to P. guttifer to T. caloptera; diet diversity showed the opposite trend.  相似文献   
35.
Soil isolates of Pseudomonas stutzeri have been shown previously to acquire genes by natural transformation. In this study a marine isolate, Pseudomonas stutzeri strain ZoBell, formerly Pseudomonas perfectomarina, was also shown to transform naturally. Transformation was detected by the Juni plate method and frequencies of transformation were determined by filter transformation procedures. Maximum frequencies of transformation were detected for three independent antibiotic resistance loci. Transformation frequencies were on the order of 4×10-5 transformants per recipient, a frequency over 100 times that of spontancous antibiotic resistance. Transfer of antibiotic resistance was inhibited by DNase I digestion. Marine isolates achieved maximum competence 14 h after transfer of exponential cultures to filters on solid media, although lower levels of competence were detected immediately following filter immobilization. Like soil isolates, P. stutzeri strain ZoBell is capable of cell contact transformation, but unlike soil isolates where transformation frequencies are greater for cell contact transformation as compared to transformation with purified DNA, the maximum frequency of transformation achieved by cell contact in the marine strain was approximately 10-fold less than transformation frequencies with purified DNA. These studies establish the first marine model for the study of natural transformation.This paper is dedicated to John L. Ingraham, Professor Emeritus of Microbiology at the University of California, Davis. Professor Ingraham was the first person to recognize natural transformation in Pseudomonas stutzeri and has continued to contribute to our understanding of the process over the past eight years. This understanding of the genetics of P. stutzeri is only one of the many areas of microbiology to which Professor Ingraham has contributed in his exceptional career  相似文献   
36.
Molecular markers often offer the only means to discriminate between species and to elucidate the specificity of many community interactions, both of which are key to the understanding of ecological patterns. Western Atlantic populations of the bryozoan Bugula neritina vary in the palatability of their larvae to predators: individuals south of Cape Hatteras produce chemical deterrents to fish predators that are absent in more northern individuals. We use mitochondrial cytochrome oxidase c subunit I (COI) sequences to show that the differences in palatability between populations correlate with the geographical distributions of two cryptic species within B. neritina. Furthermore, these cryptic species differ in their associations with bacteria that may confer chemical resistance to predation. Small subunit rRNA primers specific to a subset of gamma-proteobacteria amplified only the bacterium Endobugula sertula from the southern cryptic species. Endobugula sertula produces a family of chemical compounds (bryostatins) that may deter predators of its animal host. In contrast, the same primers amplified an array of gamma-proteobacteria from the unprotected northern cryptic bryozoan species, but never E. sertula. In combination, these findings suggest that the geographical variation in palatability observed in the larvae of B. neritina is not the result of local adaptation of a single species to regions of differing predation pressure, but rather results from the comparison of cryptic species that differ in the presence or absence of a bacterium that may provide protection against predators. The ability to identify the cryptic Bugula species and their differing relationships with bacterial associates provides an example of the important role molecular techniques may play in addressing ecological questions.  相似文献   
37.
Ultrastructural examination of the freshwater, blue-green dinoflagellate Gymnodinium acidotum Nygaard revealed the presence of an endosymbiotic cryptomonad. Features of the endosymbiont allying it with the Cryptophyceae include mitochondria with flattened cristae, paired thylakoids with electron-dense contents, and nucleomorphs, bodies unique to the Cryptophyceae. This report is the first conclusive documentation of a symbiosis involving these two groups.  相似文献   
38.
Regulation of resource allocation in plants is the key to integrate understanding of metabolism and resource flux across the whole plant. The challenge is to understand trade-offs as plants balance allocation between different and conflicting demands, e.g., for staying competitive with neighbours and ensuring defence against parasites. Related hypothesis evaluation can, however, produce equivocal results. Overcoming deficits in understanding underlying mechanisms is achieved through integrated experimentation and modelling the various spatio-temporal scaling levels, from genetic control and cell metabolism towards resource flux at the stand level. An integrated, interdisciplinary research concept on herbaceous and woody plants and its outcome to date are used, while drawing attention to currently available knowledge. This assessment is based on resource allocation as driven through plant-pathogen and plant-mycorrhizosphere interaction, as well as competition with neighbouring plants in stands, conceiving such biotic interactions as a "unity" in the control of allocation. Biotic interaction may diminish or foster effects of abiotic stress on allocation, as changes in allocation do not necessarily result from metabolic re-adjustment but may obey allometric rules during ontogeny. Focus is required on host-pathogen interaction under variable resource supply and disturbance, including effects of competition and mycorrhization. Cost/benefit relationships in balancing resource investments versus gains turned out to be fundamental in quantifying competitiveness when related to the space, which is subject to competitive resource exploitation. A space-related view of defence as a form of prevention of decline in competitiveness may promote conversion of resource turnover across the different kinds of biotic interaction, given their capacity in jointly controlling whole plant resource allocation.  相似文献   
39.
40.
Many genes in eukaryotes are acquisitions from the free-living antecedents of chloroplasts and mitochondria. But there is no evolutionary ‘homing device’ that automatically directs the protein product of a transferred gene back to the organelle of its provenance. Instead, the products of genes acquired from endosymbionts can explore all targeting possibilities within the cell. They often replace pre-existing host genes, or even whole pathways. But the transfer of an enzymatic pathway from one compartment to another poses severe problems: over evolutionary time, the enzymes of the pathway acquire their targeting signals for the new compartment individually, not in unison. Until the whole pathway is established in the new compartment, newly routed individual enzymes are useless, and their genes will be lost through mutation. Here it is suggested that pathways attain novel compartmentation variants via a ‘minor mistargeting’ mechanism. If protein targeting in eukaryotic cells possesses enough imperfection such that small amounts of entire pathways continuously enter novel compartments, selectable units of biochemical function would exist in new compartments, and the genes could become selected. Dual-targeting of proteins is indeed very common within eukaryotic cells, suggesting that targeting variation required for this minor mistargeting mechanism to operate exists in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号