首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1710篇
  免费   138篇
  国内免费   24篇
  1872篇
  2024年   3篇
  2023年   48篇
  2022年   61篇
  2021年   66篇
  2020年   55篇
  2019年   70篇
  2018年   95篇
  2017年   76篇
  2016年   71篇
  2015年   105篇
  2014年   113篇
  2013年   179篇
  2012年   88篇
  2011年   97篇
  2010年   58篇
  2009年   61篇
  2008年   68篇
  2007年   58篇
  2006年   42篇
  2005年   45篇
  2004年   42篇
  2003年   44篇
  2002年   45篇
  2001年   29篇
  2000年   44篇
  1999年   22篇
  1998年   18篇
  1997年   8篇
  1996年   6篇
  1995年   11篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   11篇
  1987年   5篇
  1986年   4篇
  1985年   10篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1980年   7篇
  1978年   4篇
  1977年   7篇
  1975年   5篇
  1974年   10篇
  1973年   4篇
排序方式: 共有1872条查询结果,搜索用时 12 毫秒
991.
Two-pore channels (TPC1, 2, and 3) are recently identified endolysosmal ion channels, but remain poorly characterized. In this study, we show for the first time a role for TPC1 in cytokinesis, the final step in cell division. HEK 293 T-REx cells inducibly overexpressing TPC1 demonstrated a lack of proliferation accompanied by multinucleation and an increase in G2/M cycling cells. Increased TPC1 was associated with a concomitant accumulation of active RhoGTP and a decrease in phosphorylated myosin light chain (MLC). Finally, we demonstrated a novel interaction between TPC1 and citron kinase (CIT). These results identify TPC1 as a central component of cytokinetic control, specifically during abscission, and introduce a means by which the endolysosomal system may play an active role in this process.  相似文献   
992.
993.
The homodimeric ATP‐binding cassette (ABC) transport complex TAPL (transporter associated with antigen processing‐like, ABCB9) translocates a broad spectrum of peptides from the cytosol into the lumen of lysosomes. The presence of an extra N‐terminal transmembrane domain (TMD0) lacking any sequence homology to known proteins distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting TAPL, we could assign distinct functions to the core complex and TMD0. The core‐TAPL complex, composed of six predicted transmembrane helices and a nucleotide‐binding domain, is sufficient for peptide transport, showing that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the full‐length transporter, the core translocation complex is targeted preferentially to the plasma membrane. However, TMD0 alone, comprising a putative four transmembrane helix bundle, traffics to lysosomes. Upon coexpression, TMD0 forms a stable non‐covalently linked complex with the core translocation machinery and guides core‐TAPL into lysosomal compartments. Therefore, TMD0 represents a unique domain, which folds independently and encodes the information for lysosomal targeting. These outcomes are discussed in respect of trafficking, folding and function of TAPL.  相似文献   
994.
Cytokinesis requires a dramatic remodeling of the cortical cytoskeleton as well as membrane addition. The Drosophila pericentrosomal protein, Nuclear-fallout (Nuf), provides a link between these two processes. In nuf-derived embryos, actin remodeling and membrane recruitment during the initial stages of metaphase and cellular furrow formation are disrupted. Nuf is a homologue of arfophilin-2, an ADP ribosylation factor effector that binds Rab11 and influences recycling endosome (RE) organization. Here, we show that Nuf is an important component of the RE, and that these phenotypes are a consequence of Nuf activities at the RE. Nuf exhibits extensive colocalization with Rab11, a key RE component. GST pull-downs and the presence of a conserved Rab11-binding domain in Nuf demonstrate that Nuf and Rab11 physically associate. In addition, Nuf and Rab11 are mutually required for their localization to the RE. Embryos with reduced levels of Rab11 produce membrane recruitment and actin remodeling defects strikingly similar to nuf-derived embryos. These analyses support a common role for Nuf and Rab11 at the RE in membrane trafficking and actin remodeling during the initial stages of furrow formation.  相似文献   
995.
996.
Evidence for a sorting endosome in Arabidopsis root cells   总被引:6,自引:0,他引:6  
In eukaryotic cells, the endocytic and secretory pathways are key players in several physiological processes. These pathways are largely inter-connected in animal and yeast cells through organelles named sorting endosomes. Sorting endosomes are multi-vesicular compartments that redirect proteins towards various destinations, such as the lysosomes or vacuoles for degradation, the trans-Golgi network for retrograde transport and the plasma membrane for recycling. In contrast, cross-talk between the endocytic and secretory pathways has not been clearly established in plants, especially in terms of cargo protein trafficking. Here we show by co-localization analyses that endosomes labelled with the AtSORTING NEXIN1 (AtSNX1) protein overlap with the pre-vacuolar compartment in Arabidopsis root cells. In addition, alteration of the routing functions of AtSNX1 endosomes by drug treatments leads to mis-routing of endocytic and secretory cargo proteins. Based on these results, we propose that the AtSNX1 endosomal compartment represents a sorting endosome in root cells, and that this specialized organelle is conserved throughout eukaryotes.  相似文献   
997.
The Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood. Our recent study has uncovered a new signal transduction system based on cytosolic galectins that elicits autophagy by controlling master regulators of metabolism and autophagy, MTOR and AMPK, in response to lysosomal damage. Thus, intracellular galectins are not, as previously thought, passive tags recognizing damage to guide selective autophagy receptors, but control the activation state of AMPK and MTOR in response to endomembrane damage.

Abbreviations: MTOR: mechanistic target of rapamycin kinase; AMPK: AMP-activated protein kinase / Protein Kinase AMP-Activated; SLC38A9: Solute Carrier Family 38 Member 9; APEX2: engineered ascorbate peroxidase 2; RRAGA/B: Ras Related GTP Binding A or B; LAMTOR1: Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 1; LGALS8: Lectin, Galactoside-Binding, Soluble, 8 / Galectin 8; LGALS9: Lectin, Galactoside-Binding, Soluble, 9 / Galectin 9; TAK1: TGF-Beta Activated Kinase 1 / Mitogen-Activated Protein Kinase Kinase Kinase 7 (MAP3K7); STK11/LKB1: Serine/Threonine Kinase 11 / Liver Kinase B1; ULK1: Unc-51 Like Autophagy Activating Kinase 1.  相似文献   

998.
Externally added ascorbate or NADH effectively reduced ferricyanide and promoted the exit of Fe3+ originated from acid-destabilized transferrin contained inside endocytic vesicles. The effect of ascorbate was mediated by an ascorbate uptake system, and the effect of NADH was mediated by the membrane-associated oxidoreductase. At physiological concentrations of both ascorbate and NADH, the ascorbate transport and the NADH-oxidoreductase system were additive as measured by the rate of reduction of ferricyanide and by the mobilization of transferrin-associated iron. The results indicate that Fe3+ reduction may occur by a nonenzymatic reaction with ascorbate transported into the vesicle lumen. The ascorbate-mediated reduction of iron derived from transferrin occurring in the endosome could play a major role in cellular iron uptake.  相似文献   
999.
Autophagy balances inflammation in innate immunity   总被引:1,自引:0,他引:1  
Vojo Deretic 《Autophagy》2018,14(2):243-251
Macroautophagy/autophagy is a homeostatic process with multiple effects on immunity. One of the pivotal contributions of autophagy in immunity is the cell autonomous control of inflammation. This property leads to systemic consequences and thereby influences the development of innate and adaptive immunity, which promotes or suppresses pathology in various disease contexts. In this review we focus on the intersections between autophagy and inflammasome activation, autophagy and interferons, and autophagy and inflammation in association with infection.  相似文献   
1000.
线粒体活性氧增多、线粒体DNA突变和拷贝数改变、Ca~(2+)超载、凋亡异常等功能障碍与肿瘤发生、生长、侵袭、转移密切相关.随着研究的逐渐深入,人们认识到线粒体是个动态的细胞器,在生理、病理因素刺激下,经线粒体融合/分裂、线粒体自噬、线粒体生物合成以及线粒体分子伴侣和线粒体未折叠蛋白反应的协同调控,在细胞器和分子水平达到对线粒体及其蛋白质的质量控制,限制和延缓功能受损线粒体的积累和过度增多,维持线粒体数量、形态、功能和蛋白质量的动态平衡,保证细胞正常生命活动的进行,使其更好地适应环境.若线粒体及其蛋白的稳态调节能力下降或失衡,会导致受损线粒体的积累并引发细胞内环境的紊乱,影响线粒体功能的正常发挥,从而诱导正常细胞的恶性转化.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号