首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   63篇
  国内免费   264篇
  2024年   8篇
  2023年   42篇
  2022年   44篇
  2021年   53篇
  2020年   51篇
  2019年   40篇
  2018年   31篇
  2017年   31篇
  2016年   50篇
  2015年   32篇
  2014年   35篇
  2013年   54篇
  2012年   34篇
  2011年   37篇
  2010年   36篇
  2009年   44篇
  2008年   54篇
  2007年   38篇
  2006年   32篇
  2005年   23篇
  2004年   21篇
  2003年   19篇
  2002年   10篇
  2001年   13篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有886条查询结果,搜索用时 15 毫秒
21.
光黑壳属植物内生菌的一个新纪录种   总被引:1,自引:0,他引:1  
从采自河南境内伏牛山的野生碎米桠(Isodon rubescens (Lamiaceae))中分离到1株内生真菌,经鉴定为光黑壳属的中国新纪录种-Preussia dakotensis,,根据研究菌株对其进行了详细的形态描述、分子鉴定及分析讨论。  相似文献   
22.
Bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M× giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M× giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soil conditions and plant compartments on assembly of the M. × giganteus‐associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T‐RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M× giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.  相似文献   
23.
Understanding the effects of root‐associated microbes in explaining plant community patterns represents a challenge in community ecology. Although typically overlooked, several lines of evidence point out that nonmycorrhizal, root endophytic fungi in the Ascomycota may have the potential to drive changes in plant community ecology given their ubiquitous presence, wide host ranges, and plant species‐specific fitness effects. Thus, we experimentally manipulated the presence of root endophytic fungal species in microcosms and measured its effects on plant communities. Specifically, we tested whether (1) three different root endophyte species can modify plant community structure; (2) those changes can also modified the way plant respond to different soil types; and (3) the effects are modified when all the fungi are present. As a model system, we used plant and fungal species that naturally co‐occur in a temperate grassland. Further, the soil types used in our experiment reflected a strong gradient in soil texture that has been shown to drive changes in plant and fungal community structure in the field. Results showed that each plant species responded differently to infection, resulting in distinct patterns of plant community structure depending on the identity of the fungus present. Those effects depended on the soil type. For example, large positive effects due to presence of the fungi were able to compensate for less nutrients levels in one soil type. Further, host responses when all three fungi were present were different from the ones observed in single fungal inoculations, suggesting that endophyte–endophyte interactions may be important in structuring plant communities. Overall, these results indicate that plant responses to changes in the species identity of nonmycorrhizal fungal community species and their interactions can modify plant community structure.  相似文献   
24.
【目的】阿尔茨海默症治疗药物石杉碱甲(Huperzine A,Hup A)的生物合成途径起始于赖氨酸脱羧酶(Lysine decarboxylase,LDC)。本研究克隆及表达了来源于产Hup A的植物内生真菌的LDC基因,并研究了其功能。【方法】采用RT-PCR扩增法,从一株产Hup A的蛇足石杉内生真菌Shiraia sp.Slf14获得LDC基因,构建表达质粒p ET-22b-LDC与p ET-32a-LDC,转化感受态细胞E.coli BL21,加入IPTG至终浓度为1×10~(–3) mol/L,于24°C、200 r/min培养8 h,诱导表达LDC蛋白质;通过Ni~(2+)金属亲和层析纯化重组LDC并建立酶促反应体系,利用TLC检测了LDC催化活性。利用生物信息学软件分析了LDC的理化性质及蛋白质的空间结构。【结果】成功克隆并异源表达出重组蛋白LDC与Trx-LDC,经SDS-PAGE电泳鉴定分子量分别为24.4 k Da和42.7 k Da,与预计大小相符。TLC结果表明LDC与Trx-LDC均具有赖氨酸脱羧酶活性。【结论】本研究从产Hup A的蛇足石杉内生真菌Shiraia sp.Slf14中成功克隆到LDC基因并进行了异源表达,检测到了其催化活性,为丰富LDC分子信息及阐明内生真菌中Hup A生物合成机制提供参考数据。  相似文献   
25.
【目的】获得江苏沿海滩涂盐生药用植物中华补血草内生及根际具有1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性的细菌,研究其遗传多样性和潜在促生活性。【方法】从中华补血草和根际土壤分离筛选具有ACC脱氨酶活性的菌株,对其ACC脱氨酶活性定量检测,通过16S r RNA基因序列分析确定菌株系统发育地位。同时研究其固氮、溶磷、产植物生长素吲哚乙酸(IAA)及耐盐能力。【结果】分离筛选获得18株具有ACC脱氨酶活性的内生与根际细菌,定量检测发现其中有13株菌的ACC脱氨酶含量在20 nmolα-KA/(mg Pr·h)以上,有11株菌可以固氮,7株菌能够解磷,9株菌产生IAA。菌株的Na Cl盐耐受范围多数在0–13%之间。16S r RNA基因测序表明,活性菌株分属于7个属,多样性丰富,节杆菌属(Arthrobacter)为优势类群。其中菌株KLBMP 5180为节杆菌属的潜在新种。【结论】江苏沿海滩涂盐生药用植物中华补血草共生环境中具有丰富多样的具ACC脱氨酶活性的菌株,并存在潜在新物种资源,具有进一步研究价值。  相似文献   
26.
The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.  相似文献   
27.
Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22–100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1–3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.  相似文献   
28.
Seven culturable bacterial isolates, obtained from the internal stem tissues of Solanum elaeagnifolium and successfully colonizing the internal stem tissues of tomato cv. Rio Grande, were screened for their in vivo antifungal activity against Fusarium oxysporum f.sp. lycopersici (FOL) and their growth‐promoting potential on tomato plants. SV101 and SV104 isolates, assessed on pathogen‐challenged tomato plants led to a significant decrease (77–83%) in Fusarium wilt severity and vascular browning extent (76%), as compared to the inoculated and untreated control. Isolates enhanced growth parameters on pathogen‐challenged and unchallenged tomato plants. SV104 and SV101 isolates were most effective in suppressing disease and enhancing plant growth. These two isolates were identified as Bacillus sp. str. SV101 ( KU043040 ) and B. tequilensis str. SV104 ( KU976970 ). They displayed antifungal activity against FOL; pathogen growth was inhibited by 64% and an inhibition zone (11.50 and 19.75 mm) against FOL could be formed using whole cell suspensions. SV101 and SV104 extracellular metabolites also inhibited FOL growth by 20 and 55%, respectively, as compared to control. B. tequilensis str. SV104 was shown to produce protease, chitinase, pectinase, IAA and siderophores. Bacillus sp. str. SV101 displayed pectinase activity and was found to be an IAA‐producing and phosphate‐solubilizing agent. To our knowledge, this is the first study reporting on S. elaeagnifolium use as a potential source of potent biocontrol and plant growth‐promoting agents.  相似文献   
29.
Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non‐supplemented control, resulting in 325 mg L?1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium‐ and sulfate‐containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth‐associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non‐supplemented control, the morphology of (NH4)2SO4‐supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号