首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2745篇
  免费   148篇
  国内免费   85篇
  2024年   10篇
  2023年   34篇
  2022年   24篇
  2021年   25篇
  2020年   55篇
  2019年   55篇
  2018年   37篇
  2017年   64篇
  2016年   66篇
  2015年   70篇
  2014年   81篇
  2013年   172篇
  2012年   76篇
  2011年   72篇
  2010年   52篇
  2009年   99篇
  2008年   117篇
  2007年   86篇
  2006年   110篇
  2005年   106篇
  2004年   67篇
  2003年   81篇
  2002年   80篇
  2001年   62篇
  2000年   60篇
  1999年   54篇
  1998年   65篇
  1997年   47篇
  1996年   48篇
  1995年   59篇
  1994年   61篇
  1993年   44篇
  1992年   50篇
  1991年   30篇
  1990年   57篇
  1989年   59篇
  1988年   44篇
  1987年   51篇
  1986年   57篇
  1985年   49篇
  1984年   86篇
  1983年   30篇
  1982年   47篇
  1981年   52篇
  1980年   48篇
  1979年   45篇
  1978年   38篇
  1977年   37篇
  1976年   37篇
  1975年   14篇
排序方式: 共有2978条查询结果,搜索用时 15 毫秒
101.
Desert algae are important components of the desert soil crust and play an essential role in desert soil ecosystem development. Owing to their special habitat, desert algae are often exposed to harsh environments, among which drought represents the most common stress. Green algae are considered to have drought tolerance potential; however, only a few studies have investigated this. In this study, we selected the green alga Chlorella sp., which was isolated from desert soil, and studied its physiological response to polyethylene glycol (PEG) 6000-induced drought stress. The results showed that drought stress can affect the photosynthetic efficiency of Chlorella sp., reduce its water retention ability, and destroy its ultrastructure. However, Chlorella sp. can cope with drought stress through a series of physiological regulatory strategies. Protective strategies include quick recovery of photosynthetic efficiency and increased chlorophyll content. In addition, induced synthesis of soluble proteins, lipids, and extracellular polysaccharide (EPS), and accumulation of osmotic regulatory substances, such as sucrose and trehalose, also contribute to improving drought tolerance in Chlorella sp. This study provides insights into the physiological responses of Chlorella sp. to drought stress, which may be valuable for understanding the underlying drought adaptation mechanisms of desert green algae.  相似文献   
102.
Nine species of marine algae have been assessed for the presence of novel hemagglutinins not extractable with buffer, unless the algal tissue was pretreated with Pronase. All species examined contained hemagglutinins, indicating the existence of a novel group of hemagglutinins which differed from those reported previously in marine algae.  相似文献   
103.
Scytonemin, the yellow-brown pigment of cyanobacterial (blue-green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near-ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near-ultraviolet-blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m?2· S?1, depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV-A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short-wavelength solar irradiance.  相似文献   
104.
Hyella immanis, a new species of endolithic cyanobacterium that penetrates carbonate ooid sand grains in the Arabian/Persian Gulf, is formally described. Natural populations of the new taxon were sampled in moving ooid shoals at four locations along the east coast of Saudi Arabia, together with seven other endolithic taxa. The new species was isolated, and its properties were studied under experimental conditions. Small reproductive cells (baeocytes) exhibited positively phototactic gliding motility following release. In culture they grew into colonies forming isodiametric packages (prevalent on agar) and distinct pseudofilaments (prevalent in liquid culture). Carbonate penetration of the cultured strain in liquid culture proceeded at a rate of up to 10 μ· d?1. Agitation of cultures with magnetic stirrers enhanced the frequency of borings and the initial boring rates, but it had no effect on the continuing boring activity. A fossil counterpart of the new species was identified in Upper Proterozoic (700–800 million years old) silicified oolitic and pisolitic rocks of East Greenland.  相似文献   
105.
Pseudochorda gracilis sp. Nov. (Pseudochordacease, Laminariales) is described from the Japan Sea coast of Hokkaido/ the species is subtidal, epilithic and annual, appearing in spring and maturing in winter. Erect thalli grow solitary or in tufts on a small discoid holdfast. They are simple, cord-shaped and hollow, with inner hyphal filaments, cylindrical medullary cells and paraphyses consisting of 3–6 cells. Hair tufts are observed only in young thalli. Unilocular sporangia are sessile and narrowly ovate. In culture, P. gracilis shows a heteromorphic life history with oogamy, characteristic of the order Laminariales. Gametophytes are dioecious and dimorphic. Gametophytes mature under lower temperature conditions (usually below 10°C), and sporophytes mature under low temperature and short-day conditions (5°C, SD). The seasonal growth pattern of the species results from the photoperiod-temperature conditions controlling saprophyte maturation.  相似文献   
106.
Epiphyte communities in a phosphorus-limited hard-water lake were compared over a 14-week period from Potamogeton illinoensis and structurally similar artificial plants of different leaf ages. Artificial plants were serially incubated in the lake to simulate the age of natural leaves. The physiognomy of loosely attached epiphytes appeared similar on the two substrata. Algal cell number and biovolume were 15-fold and 17-fold higher, respectively, on artificial leaves early in the growing season, but total algal density gradually became similar on natural and artificial plants. In contrast, the taxonomic composition of loosely attached algae became increasingly distinct, and mean cell biovolume on natural leaves was twice that on artificial leaves. Adnate epiphytes on both substrata developed from sparse populations of bacteria on new leaves to a community of diatoms, blue-green algae and numerous bacteria on mature and senescent leaves. Adnate community succession on natural leaves in late senescence/death differed from that on artificial leaves colonized for comparable periods in having (1) a marked increase in filamentous blue-green algae, (2) a subsequent decrease in all algae, and (3) a final fungi-dominated stage. The trends in colonization indicate that macrophytes in this oligotrophic lake provided a distinct habitat from that of artificial substrata for epiphytes throughout the growing season.  相似文献   
107.
Enrichment cultures of littoral benthic algae from Mono Lake, California, and Abert Lake, Oregon, were grown under conditions of varied salinity and nutrient content. Field-collected inocula were composed mainly of diatoms and filamentous blue-green and green algae. The yield of long-term cultures (30 days) showed tolerance over a broad salinity range (50–150 g·L?1) for Mono Lake-derived algae. Algae from Abert Lake had a lower range of tolerance (25–100 g·L?1) Organic content and pigment concentrations of algae from both lakes were also reduced above the tolerated salinity level. Within the range of salinity tolerance for Mono Lake algae, initial growth rates and organic content were reduced by increased salinity. The effects of macro- and micronutrient enrichment on algal growth in Mono Lake water were also tested. Only nitrogen enrichment (either as ammonium or nitrate) stimulated algal growth. Although the benthic algae cultured here had wide optima for salinity tolerance, the rates of growth and storage were limited by increased salinity within the optimum range. Although the lakes compared had similar species composition, the range and limits of tolerance of the algae were related to salinity of the lake of origin.  相似文献   
108.
It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show that under eutrophic conditions, productivity may double as a result of doubling of the atmospheric CO2 concentration. Although in practice productivity increase will usually be less, we still predict a productivity increase of up to 40% in marine species with a low affinity for bicarbonate. In eutrophic freshwater systems doubling of atmospheric CO2 may result in an increase of the productivity of more than 50%. Freshwaters with low alkalinity appeared to be very sensitive to atmospheric CO2 elevation. Our results suggest that the aquatic C sink may increase more than expected, and that nuisance phytoplankton blooms may be aggravated at elevated atmospheric CO2 concentrations.  相似文献   
109.
Excised ligulae of Glossophora kunthii (C. Ag.) J. Ag. were cultured in photoperiods of 4–24 h and photon fluence rates of 10–75 μmol.m?2.s?1. Daylength interacted with irradiance on the growth of the ligulae. Maximal growth of primary ligulae occurred in long-day regimens with high irradiances suggesting an effect of irradiance on photosynthesis and growth. In contrast, growth of secondary ligulae was greatest in short-day regimes. Differences were significant at the highest irradiance tested. Differentiation of tetrasporangia on the ligulae is a short-day photoperiodic response. Daylengths of 8.5 h or less induced a sharp increase in numbers of fertile ligulae and tetrasporangia attaining maturity. Interruptions of the dark period decreased the development of tetrasporangia; the number of interruptions had a cumulative inhibitory effect. Differentiation of reproductive structures was influenced by interactions of photoperiod and irradiance. Maximum numbers of tetrasporangia were formed at short-day regimes and low irradiances; differentiation was completely inhibited at long-day conditions and high irradiance.  相似文献   
110.
Parietochloris incisa comb. nov. (Trebouxiophyceae, Chlorophyta)   总被引:3,自引:0,他引:3  
A coccoid green alga, Myrmecia incisa Reisigl, was isolated from the soil of Mt Tateyama, Japan. Electronmicroscopy revealed that the organism has pyrenoids sparsely covered with starch segments and traversed by many parallel thylakoid membranes, and zoo-spores with counterclockwise basal body orientation. Due to the presence of these features, we have proposed a reclassification of M. incisa into the genus Parietochloris, Trebouxiophyceae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号