首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7472篇
  免费   419篇
  国内免费   442篇
  2023年   86篇
  2022年   132篇
  2021年   185篇
  2020年   196篇
  2019年   235篇
  2018年   252篇
  2017年   171篇
  2016年   160篇
  2015年   216篇
  2014年   360篇
  2013年   484篇
  2012年   326篇
  2011年   389篇
  2010年   319篇
  2009年   382篇
  2008年   368篇
  2007年   372篇
  2006年   337篇
  2005年   287篇
  2004年   257篇
  2003年   256篇
  2002年   225篇
  2001年   143篇
  2000年   145篇
  1999年   159篇
  1998年   158篇
  1997年   136篇
  1996年   105篇
  1995年   110篇
  1994年   100篇
  1993年   88篇
  1992年   109篇
  1991年   89篇
  1990年   90篇
  1989年   77篇
  1988年   74篇
  1987年   71篇
  1986年   67篇
  1985年   100篇
  1984年   89篇
  1983年   69篇
  1982年   69篇
  1981年   55篇
  1980年   61篇
  1979年   33篇
  1978年   31篇
  1977年   26篇
  1976年   23篇
  1975年   19篇
  1974年   21篇
排序方式: 共有8333条查询结果,搜索用时 15 毫秒
131.
132.
The differentiation of hepatocytes and biliary epithelial cells has been histochemically analyzed with anti-calf cytokeratin antiserum in the fetal mouse liver. Almost all young fetal hepatocytes transiently express bile-duct-specific cytokeratin; subsequently, the strong staining of the cytokeratin is confined to progenitor cells of intrahepatic biliary epithelial cells around portal veins. These results suggest that all fetal hepatocytes are bi-potent in terms of the differentiation of mature hepatocytes and intrahepatic bile-duct cells, and that the microenvironment around portal veins plays an important role in bile-duct differentiation. Large periportal hepatocytes continue to stain weakly for cytokeratin until 2 weeks after birth, although the number of positive hepatocytes decreases with development. The differentiation of bile ducts from periportal hepatocytes may continue for 2 weeks after birth.  相似文献   
133.
134.
Abstract: We have studied the regional distribution and characteristics of polyamine-sensitive [3H]ifenprodil binding sites by quantitative autoradiography in the rat brain. In forebrain areas ifenprodil displaced [3H]ifenprodil (40 nM) in a biphasic manner with IC50 values ranging from 42 to 352 nM and 401 to 974 µM. In hindbrain regions, including the cerebellum, ifenprodil displacement curves were monophasic with IC50 values in the high micromolar range. Wiping studies using forebrain slices (containing both high- and low-affinity sites) or cerebellar slices (containing only the low-affinity site) showed that high- and low-affinity ifenprodil sites are sensitive to spermine and spermidine, to the aminoglycoside antibiotics neomycin, gentamicin, and kanamycin, and to zinc. Two calmodulin antagonists, W7 and calmidazolium, also displaced [3H]ifenprodil from both sites. Other calmodulin antagonists, including trifluoperazine, prenylamine, and chlorpromazine, selectively displaced [3H]ifenprodil from its low-affinity site in hindbrain and forebrain regions. High-affinity [3H]ifenprodil sites, defined either by ifenprodil displacement curves or by [3H]ifenprodil binding in the presence of 1 mM trifluoperazine, were concentrated in the cortex, hippocampus, striatum, and thalamus with little or no labeling of hindbrain or cerebellar regions. This distribution matches that of NMDAR2B mRNA, supporting data showing that ifenprodil has a preferential action at NMDA receptors containing this subunit. Low-affinity [3H]ifenprodil sites have a more ubiquitous distribution but are especially concentrated in the molecular layer of the cerebellum. [3H]Ifenprodil was found to bind to calmodulin-agarose with very low affinity (IC50 of ifenprodil = 516 µM). This binding was displaced by calmodulin antagonists and by polyamines, with a potency that matched their displacement of [3H]ifenprodil from its low-affinity site in brain sections. However, the localization of the low-affinity [3H]ifenprodil site does not strictly correspond to that of calmodulin, and its identity remains to be further characterized. The restricted localization of high-affinity [3H]ifenprodil binding sites to regions rich in NMDAR2B subunit mRNA may explain the atypical nature of this NMDA antagonist.  相似文献   
135.
Abstract: High-affinity binding sites for [3H]PK 11195 and [3H]Ro 5-4864 with the properties of the peripheral-type benzodiazepine receptor were detected in primary cultures of both mouse neocortical and cerebellar astrocytes. The binding sites were enriched in mitochondrial fractions on differential centrifugation. An 18-kDa polypeptide was specifically photolabelled in cerebellar astrocytes by [3H]-PK 14105, a photolabel for the peripheral-type benzodiazepine receptor. However, this polypeptide did not show any reactivity with an antiserum previously raised against the corresponding polypeptide from rat adrenal gland. Various anticonvulsant and convulsant agents were tested for their ability and potency at inhibiting [3H]Ro 5-4864 binding to neocortical astrocytes. Many of these compounds, previously reported to be inhibitors of diazepam binding to neocortical astrocytes, proved ineffective in this study. No correlation was observed between convulsant/anticonvulsant potency and ability to inhibit [3H]Ro 5-4864 binding to the peripheral-type benzodiazepine receptor in these cells. Thus, whereas some convulsants and anticonvulsants might interact with this astrocytic receptor, such a system has no validity as a general screening method for these agents.  相似文献   
136.
Abstract: In a previous report, we showed that the enantiomers of α- and β-methylcholine inhibited choline uptake with Stereoselectivity, but that their transport by the choline carrier of nerve terminals showed stereospecificity. The present experiments used the same choline analogues to determine if either of the above characteristics pertains to their ability to interact with the [3H]-hemicholinium-3 binding site present on striatal membranes and synaptosomes. [3H]Hemicholinium-3 binding to striatal membranes could be inhibited stereoselectively by the enantiomers of β-methylcholine, but R (+)-α-methyl-choline was little better than its enantiomer in this test. However, [3H]hemicholinium-3 binding to striatal synaptosomes was inhibited stereoselectively by the enantiomers of both α- and β-methylcholine. This difference between the properties of [3H]hemicholinium-3 binding to membranes or to synaptosomes appears related to the presence of two ligand binding states. The [3H]hemicholinium-3 binding site could be shifted to a low-affinity state by ATP treatment and to a high-affinity state by EDTA washing. When the [3H]hemicholinium-3 binding site existed in its low-affinity state, binding was inhibited stereoselectively by the enantiomers of both a- and β-methylcholine, but when shifted to its high-affinity state, it was inhibited stereoselectively only by the enantiomers of β–methylcholine. We conclude that hemicholinium-3 interacts with the substrate recognition site of the high-affinity choline transporter, but that the Stereoselectivity of this site changes depending on its affinity state.  相似文献   
137.
Abstract: The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 µmol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 µM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 µM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 µM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration. [3H]ACh release from striatal slices could not be detected when samples were superfused with nicotine but was measurable when tissues were incubated with nicotine. The release of [3H]ACh from slices from nicotine-injected rats was significantly (p < 0.05) less than release from controls and decreased to 36, 83, and 77% of control values following incubation with 1, 10, or 100 µM nicotine, respectively. This decreased [3H]ACh release could not be attributed to methodological differences because slices from nicotine-injected rats incubated with nicotine exhibited an increased [3H]DA release, similar to results from superfusion studies. In addition, it is unlikely that the decreased release of [3H]ACh from striatal slices from nicotine-injected rats was secondary to increased DA release because [3H]ACh release from slices from hippocampus, which is not tonically inhibited by DA, also decreased significantly (p < 0.05) in response to nicotine; hippocampal slices from nicotine-injected rats incubated with 1 and 10 µM nicotine decreased to 42 and 70%, respectively, of release from slices from saline-injected animals. Results indicate that the chronic administration of nicotine increases the ability of nicotine to induce the release of [3H]DA and [3H]5-HT and decreases the ability of nicotine to evoke the release of [3H]ACh but does not alter the nicotine-induced release of [3H]NE from brain slices.  相似文献   
138.
Abstract: Activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of ionotropic glutamate receptors has been shown to result in a rapid desensitization of the receptor in the presence of certain agonists. One effect of AMPA receptor desensitization in the hippocampus may be to decrease the efficacy of AMPA receptor agonists at stimulating the release of norepinephrine from noradrenergic terminals. Recently, cyclothiazide was reported to inhibit AMPA receptor desensitization by acting at a distinct site on AMPA receptors. We have examined the effect of cyclothiazide on AMPA- and kainate (KA)-induced norepinephrine release from rat hippocampal slices to determine whether cyclothiazide would increase the efficacy of AMPA-induced [3H]norepinephrine release by inhibiting AMPA receptor desensitization. Cyclothiazide was observed to potentiate markedly both AMPA- and KA-induced [3H]norepinephrine release. This potentiation is selective for AMPA/KA receptors as cyclothiazide did not potentiate N -methyl- d -aspartate-induced [3H]norepinephrine release or release induced by the nonspecific depolarizing agents veratridine and 4-aminopyridine. These results demonstrate that AMPA receptor-mediated modulation of [3H]norepinephrine release from rat brain slices is a useful approach to studying the cyclothiazide modulatory site on the AMPA receptor complex.  相似文献   
139.
Abstract: In contrast with most other lipid substrates, in this article we show that liposomes prepared from the total myelin lipids exhibited a negligible proton permeability. Neither the generation of valinomycin-induced potassium diffusion potentials as high as -177 mV nor the imposition of large pH gradients (up to three units) was able to produce a substantial flux of protons through liposomal membranes, as determined by the distribution of [14C]-methylamine, or the changes in the fluorescence of the probes 9-aminoacridine, acridine orange, and pyranine. The presence of cations (Na+, K+, Ca2+) did not alter this behavior. Voltage clamping did not increase the trans-membrane ApH-driven proton permeability. However, II-posome diameter was found to be critical because small unilamellar vesicles displayed a much higher proton permeability than large unilamellar or multilamellar vesicles. This abnormally low proton permeability is interpreted by virtue of the characteristic biochemical composition of myelin lipid matrix, with a high content of cholesterol and sphingolipids and a very low level of free fatty acids. These results could be important for elucidating the role of myelin in the regulation of pH in the brain. In addition, the myelin lipid extract could be useful for reconstituting proteins that participate in the transport of H+ through the membrane.  相似文献   
140.
Dynamic approaches to the mechanism of photosynthesis   总被引:2,自引:0,他引:2  
An account of the author's life and scientific research is presented. Two main lines of research have been pursued: (1) Studies on the physiological aspect of photosynthesis started from experiments with crops under field conditions and then extended to the study of photosynthesis in nature; and (2) studies on the mechanism of photophosphorylation and related problems which began with the measurement of quantum requirement of photophosphorylation. This work led to the discovery of the high energy state of phosphorylation and many other interesting findings. In recent years, efforts have been made to study the operation and regulation of photosynthetic apparatus with a view to link the above-mentioned lines of research together.Written at the invitation of Govindjee.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号