首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   102篇
  国内免费   143篇
  2023年   11篇
  2022年   17篇
  2021年   22篇
  2020年   22篇
  2019年   42篇
  2018年   39篇
  2017年   32篇
  2016年   45篇
  2015年   38篇
  2014年   67篇
  2013年   141篇
  2012年   53篇
  2011年   77篇
  2010年   63篇
  2009年   97篇
  2008年   82篇
  2007年   63篇
  2006年   50篇
  2005年   59篇
  2004年   68篇
  2003年   55篇
  2002年   59篇
  2001年   33篇
  2000年   34篇
  1999年   30篇
  1998年   27篇
  1997年   24篇
  1996年   20篇
  1995年   22篇
  1994年   29篇
  1993年   21篇
  1992年   19篇
  1991年   22篇
  1990年   14篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   7篇
  1985年   19篇
  1984年   14篇
  1983年   13篇
  1982年   13篇
  1981年   2篇
  1980年   9篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1972年   2篇
排序方式: 共有1616条查询结果,搜索用时 15 毫秒
101.
The better condition of cultivation for tetradecane 1,14-dicarboxylic acid (DC-16) production from n-hexadecane (n-C16) by Candida cloacae MR-12 was investigated by using acetic acid as carbon source for the growth. In general, the condition suitable for the growth was also favorable for the production of DC-16. The change of pH during cultivation, the use of NaOH solution as pH controlling agent after pH-change and the addition of antifoam stimulated the production of DC-16.

Under the optimum conditions where the culture medium contained 15% (v/v) n-C16, 1.4% (w/v) acetic acid, inorganic salts and growth factors, and pH was changed from 6.5 to 7.75 at 16 hr after the inoculation, the highest level of DC-16 production was attained after about 72 hr cultivation and the amount of the product accumulated was 61.5 g per liter of the medium.

When a mixture of various n-alkanes was used as starting material, DCs corresponding to the respective n-alkanes were produced as mixture.  相似文献   
102.
103.
The dissociation of wheat glutenin into subunits was observed by treatment with a small amount of mercuric chloride under moderate conditions, suggesting that the cleavage of inter-polypeptide chain disulfide bonds in the glutenin might occur. The dissociation into the subunits was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The electrophoretic patterns of the glutenin treated with mercuric chloride were essentially similar to those of the glutenin treated with 2-mercaptoethanol. Silver nitrate also had the same effects as mercuric chloride, and p-chloromercuribenzoate and N-ethylmaleimide showed no effect on the dissociation of the glutenin. Complete dissociation was achieved when the glutenin solution containing 0.5% SDS and 0.01 m phosphate buffer (pH 7.0) was incubated with 10?3 m mercuric chloride (about four moles per mole of disulfide groups) at 30°C for 20 hr. Partial dissociation was also observed after 30 min incubation. Increasing temperature and SDS concentration promoted the rate of the dissociation of the glutenin by mercuric chloride.  相似文献   
104.
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180–200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.  相似文献   
105.
The cDNA encoding a putative xylose reductase (xyrA) from Aspergillus oryzae was cloned and coexpressed in the yeast Saccharomyces cerevisiae with A. oryzae xylitol dehydrogenase cDNA (xdhA). XyrA exhibited NADPH-dependent xylose reductase activity. The S. cerevisiae strain, overexpressing the xyrA, xdhA, endogenous XKS1, and TAL1 genes, grew on xylose as sole carbon source, and produced ethanol.  相似文献   
106.
Fructose, glucose, and mannose were treated with subcritical aqueous ethanol for ethanol concentrations ranging from 0 to 80% (v/v) at 180–200 °C. The aldose–ketose isomerization was more favorable than ketose–aldose isomerization and glucose–mannose epimerization. The isomerization of the monosaccharides was promoted by the addition of ethanol. In particular, mannose was isomerized most easily to fructose in subcritical aqueous ethanol. The apparent equilibrium constants for the isomerizations of mannose to fructose, Keq,M→F, and glucose to fructose, Keq,G→F, were independent of ethanol concentration and increased with increasing temperature. Moreover, the Keq,M→F value was much larger than the Keq,G→F value. The enthalpies for the isomerization of mannose to fructose, ΔHM→F, and glucose to fructose, ΔHG→F, were estimated to be 18 and 24 kJ/mol, respectively, according to van’t Hoff equation. Subcritical aqueous ethanol can be used to produce fructose from glucose and mannose efficiently.  相似文献   
107.
In order to elucidate the biochemical mechanism of the alkaline protease accumulation from n-paraffins by a kabicidin-resistant mutant of Fusarium sp., the cell constituents and the extracellular products of the mutant strain were compared with those of the parent strain. No prominent differences in the cell constituents were observed between the parent and the mutant. From the analysis of the extracellular products, however the mutant was found to have a high productivity of some hydrolytic enzymes, such as amylase and ribonuclease, and ergosterol which is a structural constituent of fungal cell membrane. The relationship of secretion of ergosterol, resistance to kabicidin and accumulation of alkaline protease is discussed.  相似文献   
108.
Operating the saccharification and fermentation processes at high‐substrate loadings is a key factor for making ethanol production from lignocellulosic biomass economically viable. However, increasing the substrate loading presents some disadvantages, including a higher concentration of inhibitors (furan derivatives, weak acids, and phenolic compounds) in the media, which negatively affect the fermentation performance. One strategy to eliminate soluble inhibitors is filtering and washing the pretreated material. In this study, it was observed that even if the material was previously washed, inhibitory compounds were released during the enzymatic hydrolysis step. Laccase enzymatic treatment was evaluated as a method to reduce these inhibitory effects. The laccase efficiency was analyzed in a presaccharification and simultaneous saccharification and fermentation process at high‐substrate loadings. Water‐insoluble solids fraction from steam‐exploded wheat straw was used as substrate and Saccharomyces cerevisiae as fermenting microorganism. Laccase supplementation reduced strongly the phenolic content in the media, without affecting weak acids and furan derivatives. This strategy resulted in an improved yeast performance during simultaneous saccharification and fermentation process, increasing significantly ethanol productivity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   
109.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   
110.
陈献忠  肖艳  沈微  樊游 《微生物学报》2016,56(6):922-931
【目的】以淀粉为原料的乙醇发酵工艺仍然是当前燃料乙醇的主要生产方式。然而,一些原料中含有的果胶物质不仅降低了乙醇产率,而且会导致醪液粘度增大,从而会进一步影响传质和传热、增加设备负担等。构建能够自主降解果胶质的重组酿酒酵母并应用于燃料乙醇生产是值得探索的领域。【方法】论文将来源于黑曲霉的果胶酯酶基因克隆于α因子信号肽下游并通过酵母α-凝集素C-端蛋白的介导构建了在细胞表面锚定表达果胶酯酶的重组酿酒酵母PE。【结果】重组酵母的果胶酯酶表达水平达到2.6 U/g(菌体湿重),并进一步鉴定了重组果胶酯酶性质。以甘薯粉为原料的同步糖化发酵实验中,重组酵母PE的乙醇浓度和乙醇转化率分别达到95 g/L和88.1%,与出发菌株相比提高了2.2%。更重要的是,表面展示果胶酯酶能够显著降低发酵过程中的发酵液粘度。【结论】通过在工业酿酒酵母表面展示表达果胶酯酶不仅能够提高糖化酶等的作用效果和酿酒酵母的代谢能力,而且能够显著降低乙醇生产过程中发酵液的粘度,将对工业规模乙醇生产在降低设备负担、节约能耗方面具有一定的潜在价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号