首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   49篇
  国内免费   16篇
  252篇
  2024年   2篇
  2023年   6篇
  2022年   3篇
  2021年   11篇
  2020年   17篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   12篇
  2015年   14篇
  2014年   17篇
  2013年   11篇
  2012年   9篇
  2011年   4篇
  2010年   11篇
  2009年   18篇
  2008年   10篇
  2007年   9篇
  2006年   12篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1984年   1篇
排序方式: 共有252条查询结果,搜索用时 0 毫秒
121.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   
122.
Questions: What factors influence the density, size and growth form of trees in secondary Acacia zanzibarica woodlands on a former humid savanna rangeland? How does tree density relate to variation in tree foliage and spines, and woody and grass biomass? Location: Tropical coastal Tanzania (former Mkwaja Ranch, now in Saadani National Park). Methods: We surveyed 97 circular plots (4‐m radius) representing a gradient from open savanna to dense woodland. Within each plot, we measured all trees and estimated the biomass of spines. Foliage biomass of tree and grass layers was estimated on three occasions, twice during the wet season and once in the dry season. Soil samples were taken from each plot and analysed for texture and nutrient content. Interrelationships among various variables were investigated using linear multiple regression and mixed effects models. Results: Tree densities were highest on more nutrient‐rich, heavy soils. Spinescence was highest on trees in open savanna. Biomass of tree foliage in the wet season was best explained by numbers of ant nests and tree live‐wood ratio. Foliage biomass in the dry season was less than half that in the wet season and best predicted by grass biomass. Variables related to biomass of the grass layer were strongly influenced by fire; living grass biomass also decreased with increasing tree density. Conclusions: A. zanzibarica is a tree with a high water demand, and the association with heavy soils is probably due to greater availability of water on these sites. Establishment of A. zanzibarica woodlands significantly reduced grazing resources at Mkwaja Ranch. Under post‐ranching conditions, however, fires and soil conditions predominate. The woodlands may, therefore, represent a transient state of woody density in a still resilient humid savanna.  相似文献   
123.
124.
Aim Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land‐use, conservation management, and landscape‐scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground‐truth air‐photo results and determine the nature and causes of observed vegetation changes. Results There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid‐1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non‐flammable; what fires do burn are small and of low intensity. Main conclusions Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid‐1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable‐state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems.  相似文献   
125.
We created two eastern red cedar master chronologies, one from trees growing along the edge of grassy openings and another from trees growing within the intact forest canopy. Correlation coefficients were calculated between ring width indices from two time periods (1895–1949 and 1950–2001) of the residual chronology and temperature, precipitation, and Palmer Drought Severity Indices (a standardized measure of dryness). The two time periods represented younger and older eastern red cedar. The younger, interior eastern red cedar had significant, positive correlations between ring width index (RWI) and June and November precipitation, March temperature, and Palmer Drought Severity Index (PDSI) from May through December. There were significant, negative correlations between RWI and May, June, and December temperature and May through July PDSI from the previous year. For the older, interior eastern red cedar significant, positive correlations existed between RWI and precipitation from the previous June, October, and December, and PDSI from July. Significant, negative correlations existed between RWI and January precipitation and May temperature. For the edge eastern red cedar within the earlier time segment (1895–1949) there was only one significant dendroclimatic correlation and this was a negative correlation with December temperature. For the edge eastern red cedar within the later time segment (1950–2001) there were significant, positive correlations between RWI and precipitation from June, September, October, and December of the previous year, March precipitation from the current growing season, and PDSI from July. There were significant, negative correlations between RWI and precipitation from January and November, temperature from the previous June, temperature from May and December, and PDSI from June of the previous year. Thus, eastern red cedar from the interior had more significant correlations to climate than trees growing along the edge. This result does not match other studies that have found edge trees to be more responsive to climate than interior trees. Perhaps this difference can be explained by some of the variations in the significant dendroclimatic correlations between the earlier and later time periods. The differences between the two time periods (within a single site) imply that the environmental conditions of trees changed over time. These differences may be a result of tree encroachment into the forest openings which creates a constantly changing environment for the eastern red cedar and results in some of the high variability of dendroclimatic relationships identified in this study. These results imply that trees growing in communities without stable edges, i.e. where the environment around the trees is in a constant state of flux, would be unsuitable for climatic reconstruction because they do not conform to the uniformitarian principle.  相似文献   
126.
Recent trends of increasing woody vegetation in arid and semiarid ecosystems may contribute substantially to the North American C sink. There is considerable uncertainty, however, in the extent to which woody encroachment alters dryland soil organic carbon (SOC) and total nitrogen (TN) pools. To date, studies assessing SOC and TN response to woody plant proliferation have not explicitly assessed the variability caused by shrub age or size and subcanopy spatial gradients. These factors were quantified via spatially intensive soil sampling around Prosopis velutina shrubs in a semidesert grassland, using shrub size as a proxy for age. We found that bulk density increased with distance from the bole (P < 0.005) and decreased with increasing shrub size (P= 0.056), while both SOC and TN increased with shrub size and decreased with distance from the bole (P < 0.001 for both). Significant (and predictable) spatial variation in bulk density suggests that use of generic values would generate unreliable estimates of SOC and TN mass, and subcanopy SOC pools could be overestimated by nearly 30% if intercanopy bulk density values were applied to subcanopy sites. Predictive models based on field-documented spatial patterns were used to generate integrated estimates of under-shrub SOC and TN pools, and these were compared with results obtained by typical area-weighting protocols based on point samples obtained next to the bole or at a specified distance from the bole. Values obtained using traditional area-weighting approaches generally overestimated SOC pools relative to those obtained using the spatially integrated approach, the discrepancy increasing with increasing shrub size and proximity of the point sample to the bole. These discrepancies were observed at the individual plant scale and for landscapes populated by various shrub size classes. Results suggest that sampling aimed at quantifying shrub encroachment impacts on SOC and TN pools will require area-weighting algorithms that simultaneously account for shrub size (age) and subcanopy spatial patterns.  相似文献   
127.
Abstract: We compared vegetative structure and bird communities among 4 successional states in central Oregon representing a continuum from 1) postburn grassland, 2) mountain big sagebrush—Idaho fescue (Artemisia tridentatA—Festuca idahoensis) shrub—steppe, 3) sagebrush—steppe—juniper (Juniperus occidentalis), to 4) old-growth western juniper. Species richness, evenness, and diversity of bird communities were highest in old-growth and mid-successional juniper (22.9 species/transect and 23.6 species/transect, respectively) but lowest in the grasslands (17.6 species/transect). Bird species diversity was positively correlated with physiognomic cover diversity (r = 0.74, P = 0.001). Density of breeding birds was greatest in old-growth juniper (6.6 birds/ha) and lowest in postburn grasslands (3.6 birds/ha) but similar in shrub—steppe and sagebrush—steppe—juniper (6.0 birds/ha and 5.5 birds/ha, respectively). Old-growth juniper had the highest total densities of both tree and cavity nesters. Mountain chickadees (Parus gambeli), Cassin's finches (Carpodacus cassinii), chipping sparrows (Spizella passerina), brown-headed cowbirds (Molothrus ater), mountain bluebirds (Sialia currucoides), dark-eyed juncos (Junco hyemalis), Empidonax flycatchers, ash-throated flycatchers (Myiarchus cinerascens), and northern flickers (Colaptes auratus) were more abundant in cover types dominated by junipers. Vesper sparrows (Pooecetes gramineus), western meadowlarks (Sturnella neglecta), green-tailed towhees (Pipilo chlorurus), and horned larks (Eremophila alpestris) were associated with grassland communities. Brewer's sparrows (Spizella breweri), sage sparrows (Amphispiza belli), sage thrashers (Oreoscoptes montanus), and horned larks (Eremophila alpestris) were most abundant in sagebrush cover types. Management strategies should restore or maintain the desired proportions of the different successional states to maintain populations of grassland and sagebrush birds while providing habitat for tree and cavity nesting species.  相似文献   
128.
129.
Lack of tree regeneration and persistency of species-poor shrublands represent a growing problem across Mediterranean evergreen oak forests. What constrains forest regeneration is poorly understood, and restoration attempts have been largely unsuccessful. We assessed the contribution of four different mechanisms of tree recruitment limitation (that is, source, dispersal, germination, and establishment) in a cork oak (Quercus suber) system in southern Portugal. Using a combination of field studies and experiments, we quantified seed production, seed removal and dispersal, seed survival and germination, seedling establishment and survival, as well as cork oak natural regeneration for the three dominant vegetation types in this system (Cistus ladanifer shrubland, oak forest, and oak savanna). We found that all four forms of cork oak recruitment limitation were significantly more severe in shrublands than in oak forests and savannas, so that oak seedling recruitment in shrubland was impeded in multiple ways. Our results explain why transitions from shrublands to oak savannas and forests are extremely difficult, and that the release from arrested succession in this system requires the simultaneous relief of multiple constraints on recruitment limitation in the early life history of oaks. These results have important implications for the restoration and conservation of Mediterranean oak systems.  相似文献   
130.
王乐  杜灵通  马龙龙  丹杨 《生态学报》2022,42(1):246-254
宁夏盐池县从20世纪70年代开始在荒漠草原上人工种植柠条灌木用以防风固沙和生态恢复,这一人为措施极大地改变了区域生态系统的植被结构和碳循环,而定量评估人工灌丛化对荒漠草原生态系统碳储量的影响,不仅能够揭示人类活动的碳循环反馈机制,而且可为地方政府生态治理提供理论指导。结合Biome-BGC模型和Logistics生长模型模拟了1958—2017年间荒漠草原人工灌丛化前后的碳储量变化,定量分析了人工灌丛化对生态系统碳储量和组分的影响。结果表明:(1)结合Biome-BGC模型和Logistics生长模型可以较准确地模拟出荒漠草原人工灌丛化过程中生态系统碳储量的变化。(2)人工灌丛化会快速改变荒漠草原的碳储量累积特征,柠条灌木种植后的快速生长阶段极大增强了生态系统的总碳储量,导致生态系统的碳储量特征由草地型向灌木型转变。(3)人工灌丛化改变了生态系统各类型碳储量的组分结构,其对地上植被和枯落物碳储量的影响非常明显,灌丛化后生态系统的植被和枯落物碳分别增加了6倍和1.76倍;因植被碳向土壤碳转化过程较慢,故人工灌丛化对地下土壤碳储量的影响在短期内较为微弱。以上结果显示,荒漠草原人工灌丛化能显...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号