首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   49篇
  国内免费   15篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   11篇
  2020年   17篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   12篇
  2015年   14篇
  2014年   17篇
  2013年   11篇
  2012年   9篇
  2011年   4篇
  2010年   11篇
  2009年   18篇
  2008年   10篇
  2007年   9篇
  2006年   12篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1984年   1篇
排序方式: 共有251条查询结果,搜索用时 281 毫秒
1.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   
2.

Aims

Woody plant encroachment is a widespread phenomenon affecting treeless or sparsely treed habitats. We aimed to determine the extent and timing of tree and shrub encroachment into rock barrens of eastern Ontario over the last century, and to assess implications for their ongoing management.

Location

Queen's University Biological Station in the Frontenac Arch ecoregion.

Methods

We quantified the extent of change in woody vegetation in 290 rock barrens using aerial photography from 1925, 1965, and 2008. Composition and structure of woody plant communities in 10 barrens was subsequently quantified in the field using plot-based sampling. Cores or cross-sections were obtained from individuals >1.5 m height and dendrochronological techniques were used to determine their age and identify temporal patterns of any woody encroachment.

Results

Aerial photography indicated that the mean proportion of woody plant cover in barrens increased 22.5% from 1925 to 2008. Dendroecological analysis supported this. Few trees were present prior to 1900 and most established since 1960. Fraxinus americana, Juniperus virginiana, and Juniperus communis were the most common woody species colonizing the barrens. Remnants of large Pinus strobus stumps with extensive charring were found in 90% of the sampled barrens at a mean density of 22.6 stumps ha−1.

Conclusions

Rock barrens on the Frontenac Arch have changed substantially over the past century; gradually being colonized by trees and shrubs and losing their distinctly open character. Active management — including prescribed fire and mechanical thinning — may be necessary if there is a desire to maintain these barrens and the rare species they support as components of the region's biodiversity. However, identification of a reference state for restoration is complicated by the fact that the structure and composition of these habitats were undoubtedly altered by European land clearance in the 19th century, and that some of these areas likely existed as pine woodlands before that.  相似文献   
3.
The ecological impact of woody encroachment and the responses of herbage yield to encroachment were assessed at three locations in Borana rangeland at the end of the growing season. The study was carried out in two communal grazing areas (Medhecho and Dubluk) and one Government ranch (Dida‐Tuyura) in bush and/or shrub encroached and non‐encroached sites. In each area, three altitude ranges were distinguished and in each altitude range one transect, covering both encroached and non‐encroached rangeland, was selected. The assessment was based on the yield and botanical composition of the herbaceous layer. The grasses Cenchrus ciliaris, Chrysopogon aucheri and Panicum coloratum were common or dominant in both encroached and non‐encroached sites. Pennisetum mezianum and Pennise‐tum stramineum were typically found in encroached vegetation. The relative yield increased with non‐encroached sites and varied at different altitude ranges from about 106% to about 150%, thus increases ranged from 75% in Medhecho to 350% in Dubluk as determined from the lower values of the ranges. The encroached vegetation had a significantly lower score for herbage yield than the non‐encroached vegetation for most of the sites, although the differences were small. Differences based on altitude range were also significant for Eragrostis papposa and Pennisetum stramineum, while the three areas showed a significant difference for the mean yield of Aristida adscensionis, Cenchrus ciliaris and Eragrostis papposa.  相似文献   
4.
Tropical forests contain much of the world's biodiversity, yet their rate of decline is increasing. The strategy most frequently used to protect this biodiversity is to make parks and reserves. While there is a great deal of research on the effectiveness of parks for protecting biodiversity, there is little research on how well extractive reserves conserve biodiversity. Here, we evaluate the effectiveness of four forest reserves in western Uganda at maintaining populations of primates and compare census data from the reserves to data from the neighbouring well‐protected Kibale National Park. The relative abundance of the five most common primates in the park was approximately four times that of the forest reserves. In the forest reserves, evidence of new human encroachment was seen every 500 m, while in the park it was seen every 100,000 m. Two recommendations emerge from our research: (i) for forest reserves, such as those studied here, to have conservation value for primates, extraction must be reduced and (ii) until the long‐term viability of the populations in forest reserves can be ascertained, they should not be considered in estimates of the sizes of endangered species protected ranges.  相似文献   
5.
6.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   
7.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   
8.
The southern African endemic Short-clawed Lark Certhilauda chuana has two geographically isolated populations. Little is known about the smaller eastern population, which is restricted to the Polokwane Plateau, South Africa. To provide input for a conservation strategy for the eastern population, this study evaluated its habitat preference. Territories previously supporting Short-clawed Lark (1995–2005) were visited in the 2008/09 breeding season. Biophysical habitat parameters were measured at each site to determine the differences between active territories and those no longer active. Active territories had significantly less grass cover, more bare ground, shorter grass, smaller trees and had burned more recently. Bush encroachment and a reduction in the fire frequency were identified as serious threats to the Short-clawed Lark. However, overgrazing and harvesting of wood in rural areas may benefit the species.  相似文献   
9.
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.  相似文献   
10.
Aims: Shrub-encroached grassland has become an important vegetation type in China's arid and semi-arid region. Our study objective is to explore the spectral features of shrub and grass communities, as well as their empirical relationships with shrub coverage. The quantitative estimation of shrub cover based on medium-resolution Landsat satellite imagery provides the practical basis for long term retrieval of large areas of shrub expansion in the grassland region. Methods: Linear models and Multiple Endmember Spectral Analysis Model (MESMA) based on medium resolution Landsat satellite imagery were developed to quantify the shrub coverage in a shrub-encroached grassland region in Xianghuang Banner, Nei Mongol using the spectral features and their seasonal differences between the shrub and grass communities. Important findings: Compared to Leymus chinensis and Stipa krylovii dominated grass communities, Caragana microphylla community had a higher normalized difference vegetation index (NDVI), modified red edge normalized difference vegetation index (mNDVI705), and red edge slope. The red edge position of C. microphylla community shifted to longer wavelengths. The average and the maximum shrub coverage was 13% and 25%, respectively, in the shrub-encroached grassland based on both models. The correlation coefficient of determination (R2) and root mean square error (RMSE) of the linear model was 0.31 and 0.05, respectively. We found that the linear model based on seasonal differences of shrub and grass community was more suitable for retrieving shrub coverage in the study area from medium resolution imagery than the MESMA model that is based on mid-summer images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号