首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   30篇
  国内免费   37篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   13篇
  2019年   13篇
  2018年   5篇
  2017年   12篇
  2016年   11篇
  2015年   19篇
  2014年   21篇
  2013年   15篇
  2012年   17篇
  2011年   15篇
  2010年   13篇
  2009年   27篇
  2008年   25篇
  2007年   23篇
  2006年   17篇
  2005年   28篇
  2004年   20篇
  2003年   27篇
  2002年   15篇
  2001年   17篇
  2000年   19篇
  1999年   11篇
  1998年   14篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
41.
东北三省野生北细辛资源调查报告   总被引:1,自引:0,他引:1  
通过对东北三省野生北细辛资源的地理分布、生态环境、群落类型、单位面积蕴藏量等进行调查研究,为野生北细辛资源保护与可持续利用措施的制定提供依据。  相似文献   
42.
This animal simulation model, named e-Cow, represents a single dairy cow at grazing. The model integrates algorithms from three previously published models: a model that predicts herbage dry matter (DM) intake by grazing dairy cows, a mammary gland model that predicts potential milk yield and a body lipid model that predicts genetically driven live weight (LW) and body condition score (BCS). Both nutritional and genetic drives are accounted for in the prediction of energy intake and its partitioning. The main inputs are herbage allowance (HA; kg DM offered/cow per day), metabolisable energy and NDF concentrations in herbage and supplements, supplements offered (kg DM/cow per day), type of pasture (ryegrass or lucerne), days in milk, days pregnant, lactation number, BCS and LW at calving, breed or strain of cow and genetic merit, that is, potential yields of milk, fat and protein. Separate equations are used to predict herbage intake, depending on the cutting heights at which HA is expressed. The e-Cow model is written in Visual Basic programming language within Microsoft ExcelR. The model predicts whole-lactation performance of dairy cows on a daily basis, and the main outputs are the daily and annual DM intake, milk yield and changes in BCS and LW. In the e-Cow model, neither herbage DM intake nor milk yield or LW change are needed as inputs; instead, they are predicted by the e-Cow model. The e-Cow model was validated against experimental data for Holstein–Friesian cows with both North American (NA) and New Zealand (NZ) genetics grazing ryegrass-based pastures, with or without supplementary feeding and for three complete lactations, divided into weekly periods. The model was able to predict animal performance with satisfactory accuracy, with concordance correlation coefficients of 0.81, 0.76 and 0.62 for herbage DM intake, milk yield and LW change, respectively. Simulations performed with the model showed that it is sensitive to genotype by feeding environment interactions. The e-Cow model tended to overestimate the milk yield of NA genotype cows at low milk yields, while it underestimated the milk yield of NZ genotype cows at high milk yields. The approach used to define the potential milk yield of the cow and equations used to predict herbage DM intake make the model applicable for predictions in countries with temperate pastures.  相似文献   
43.
44.
45.
茂兰位于贵州省东南部,这里有茂密原始的喀斯特森林,它的原生性与其完好的保护状态使之成为极其重要的自然资源,它有独特多样的喀斯特地貌,有种类繁多的动植物类型,这里林木苍翠,山水奇异,是科研与旅游的理想场所。  相似文献   
46.
47.
An abundant supply of cavity-bearing trees is important for maintaining wildlife communities in harvested forests. During harvesting, suitable trees and cavities are directly removed, and the longevity of cavities in retained trees may be reduced by increased exposure to wind and other disturbance factors. We examined patterns of cavity survival in retained trembling aspen (Populus tremuloides) trees in harvested stands compared with those in unharvested mature stands by monitoring the persistence of individual cavities. We followed 930 cavities in 3 harvest treatments for up to 17 years in pre-cut and uncut forest, and up to 13 years post-harvest (reserve patches and dispersed retention), in temperate-mixed forests of interior British Columbia, Canada. Average annual cavity loss rates were 5.6% in pre-cut and uncut forest, 7.2% for cavities in trees retained in reserves, and 8.1% for cavities in retained trees dispersed throughout cuts. Correspondingly, median cavity longevity was 15 years for cavities in pre-cut and uncut forest, 10 years for cavities retained in reserves, and 9 years for those in dispersed retention. Risk of loss increased most for cavities in living trees (factor of 2.17), but we found no detectable difference for cavities in recently dead trees and trees with advanced decay. We suggest retention of a range of aspen size and decay classes to allow for future cavity-tree recruitment in harvested stands. Inclusion of wildlife reserves as part of an overall forest management plan will also help to mitigate the effects of windthrow and maintain long-lived cavity resources required by a large portion of forest wildlife. © 2013 The Wildlife Society  相似文献   
48.
49.
Astragalus membranaceus is a major traditional Chinese medicinal plant. Here, we investigated the mobilizations of seed reserves during its germination and post-germination growth, as well as the effects of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA). It was found that both starch and protein were rapidly mobilized during the seed germination. However, lipid was mostly utilized during the post-germination. Exogenous ABA and MeJA treatments significantly inhibited the germination and post-germination growth. Meanwhile, the treatments decreased the weight of mobilized seed reserves and seed reserves utilization efficiency, retarded the mobilizations of protein and lipid, and led to excessive consumption of carbon energy. Moreover, the treatments changed fatty acid compositions in cotyledons, with the decreasing of the double bond index and average carbon chain length. This study will help us to understand the inhibition mechanism of exogenous ABA and MeJA on the germination and post-germination growth of A. membranaceus.  相似文献   
50.
We synthesize findings from one of the world's largest and longest‐running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼ 1000 km2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38‐year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional‐ and global‐change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long‐term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction‐prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger‐scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree‐community composition, and increases in liana (woody vine) abundance. Such large‐scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号