首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1866篇
  免费   135篇
  国内免费   56篇
  2057篇
  2024年   5篇
  2023年   7篇
  2022年   15篇
  2021年   15篇
  2020年   38篇
  2019年   39篇
  2018年   31篇
  2017年   46篇
  2016年   50篇
  2015年   60篇
  2014年   70篇
  2013年   179篇
  2012年   67篇
  2011年   118篇
  2010年   59篇
  2009年   107篇
  2008年   78篇
  2007年   77篇
  2006年   83篇
  2005年   88篇
  2004年   76篇
  2003年   70篇
  2002年   52篇
  2001年   44篇
  2000年   30篇
  1999年   46篇
  1998年   38篇
  1997年   34篇
  1996年   29篇
  1995年   44篇
  1994年   45篇
  1993年   46篇
  1992年   51篇
  1991年   32篇
  1990年   20篇
  1989年   24篇
  1988年   12篇
  1987年   12篇
  1986年   5篇
  1985年   18篇
  1984年   28篇
  1983年   10篇
  1982年   19篇
  1981年   3篇
  1980年   10篇
  1979年   10篇
  1978年   5篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
排序方式: 共有2057条查询结果,搜索用时 15 毫秒
211.
The present study explores in vivo whether and how prostaglandin F(2alpha) (PGF(2alpha)), a membrane phospholipid hydrolysis product, causes neuronal death. The concentration of PGF(2alpha) measured by microdialysis sampling increased threefold immediately following impact injury to the rat spinal cord. Administration of PGF(2alpha) into the cord through a dialysis fiber caused significant cell loss, increased extracellular levels of hydroxyl radicals and malondialdehyde - an end product of membrane lipid peroxidation - to 3.3 and 2.3 times basal levels, respectively. This suggests that PGF(2alpha)-induced cell death is partly due to hydroxyl radical-triggered peroxidation. Generating hydroxyl radical by administering Fenton's reagents into the cord through the fibers significantly increased malondialdehyde production - the first direct in vivo evidence that hydroxyl radical triggers membrane lipid peroxidation. Methylprednisolone significantly reduced the release of PGF(2alpha) upon spinal cord injury and blocked PGF(2alpha)-induced hydroxyl radical and malondialdehyde production, but did not significantly reduce Fenton's reagent-induced malondialdehyde production, despite the production of more malondialdehyde by PGF(2alpha). This suggests that methylprednisolone may not directly scavenge hydroxyl radical, and that its 'antioxidant' effect is a consequence of blocking the pathways for producing toxic PGF(2alpha) and for PGF(2alpha)-induced hydroxyl radical formation, thereby reducing membrane lipid peroxidation.  相似文献   
212.
213.
The stereoselective degradation of indoxacarb enriched with (+)‐S‐indoxacarb (S/R:70/30) was investigated in three typical green teas. A convenient and precise chiral method was developed and validated for measuring indoxacarb enantiomers in green tea. The developed method was based on high‐performance liquid chromatography coupled with tandem mass spectrometry using a Chiralpak IC column. The stereoselective degradation of indoxacarb enantiomers showed that the (+)‐S‐enantiomer dissipated faster than the (?)‐R‐enantiomer in all three typical tea farms. However, no enantiomerization was observed after applying pure (+)‐S‐indoxacarb. Residues on tea plant of the active ingredient (+)‐S‐indoxacarb from suspension concentrate (SC) was more persistent than that from emulsifiable concentrate (EC). Chirality 27:262–267, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
214.
Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP‐Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26–27 kDa). Seventy‐two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty‐two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7–9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease‐like and three thiol protease‐like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca2+, Mg2+, Mn2+, Ni2+, Zn2+, Cu2+, and Co2+ was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti‐MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti‐MBP abzymes, which can attack MBP of myelin‐proteolipid sheath of axons and play an important role in MS and SLE pathogenesis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
215.
In Saccharomyces cerevisiae, Msh2–Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2–Msh3 is also required for 3′ non-homologous tail removal (3′NHTR) in double-strand break repair. In both pathways, Msh2–Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2–Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3′NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2–Msh3 and Msh2–msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3′NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2–Msh3, indicating that the MMR and 3′NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2–Msh3. Msh2–msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2–Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.  相似文献   
216.
Solids resulting from pretreatment of corn stover by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) technologies were hydrolyzed by enzyme cocktails based on cellulase supplemented with β-glucosidase at an activity ratio of 1:2, respectively, and augmented with up to 11.0 g xylanase protein/g cellulase protein for combined cellulase and β-glucosidase mass loadings of 14.5 and 29.0 mg protein (about 7.5 and 15 FPU, respectively)/g of original potential glucose. It was found that glucose release increased nearly linearly with residual xylose removal by enzymes for all pretreatments despite substantial differences in their relative yields. The ratio of the fraction of glucan removed by enzymes to that for xylose was defined as leverage and correlated statistically at two combined cellulase and β-glucosidase mass loadings with pretreatment type. However, no direct relationship was found between leverage and solid features following different pretreatments such as residual xylan or acetyl content. However, acetyl content not only affected how xylanase impacted cellulase action but also enhanced accessibility of cellulose and/or cellulase effectiveness, as determined by hydrolysis with purified CBHI (Cel7A). Statistical modeling showed that cellulose crystallinity, among the main substrate features, played a vital role in cellulase–xylanase interactions, and a mechanism is suggested to explain the incremental increase in glucose release with xylanase supplementation.  相似文献   
217.
This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30‐min pretreatment at temperature 180°C, SPORL can achieve near‐complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0–4.5 in only about 10 h enzymatic hydrolysis. The enzyme loading was about 20 FPU cellulase plus 30 CBU β‐glucosidase per gram of cellulose. The production of fermentation inhibitor furfural was less than 20 mg/g of aspen wood at pH 4.5. With pH 4.5, SPORL avoided reactor corrosion problem and eliminated the need for substrate neutralization prior to enzymatic hydrolysis. Similar results were obtained from maple and eucalyptus. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
218.
Racemic ethyl 2,3-dibromopropionate, commercially available at low price, is a key intermediate used in the synthesis of several heterocycle fragments, which are present in many biologically active compounds. Surprisingly, the enantiomers are not commercially available and have never been described in the literature. In this work, we undertook two different strategies to obtain these enantiomers, which are enantioselective synthesis and preparative HPLC enantioseparation of commercially available racemate on multigram scale. The first strategy has proved inadequate because racemization occurred during the synthesis (ee ≈ 9-50%). Conversely, the second strategy produced a very good enantioseparation of commercially available racemate (ee > 99.5% for both enantiomers) on multigram scale.  相似文献   
219.
BINAP‐metal complexes were prepared as extractant for enantioselective liquid–liquid extraction (ELLE) of amino‐(4‐nitro‐phenyl)‐acetic acid (NPA) enantiomers. The influence of process variables, including types of organic solvents and metal precursor, concentration of ligand, pH, and temperature on the efficiency of the extraction, were investigated experimentally. An interfacial reaction model was established for insightful understanding of the chiral extraction process. Important parameters required for the model were determined. The experimental data were compared with model predictions to verify the model prediction, It was found that the interfacial reaction model predicted the experimental results accurately. By modeling and experiment, an optimal extraction condition with pH of 7 and host (extractant) concentration of 1 mmol/L was obtained and high enantioselectivity (αop) of 3.86 and performance factor (pf) of 0.1949 were achieved. Chirality 26:79–87, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
220.
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号