首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6572篇
  免费   127篇
  国内免费   17篇
  2024年   32篇
  2023年   373篇
  2022年   257篇
  2021年   322篇
  2020年   389篇
  2019年   486篇
  2018年   464篇
  2017年   329篇
  2016年   388篇
  2015年   245篇
  2014年   545篇
  2013年   1061篇
  2012年   94篇
  2011年   99篇
  2010年   87篇
  2009年   108篇
  2008年   128篇
  2007年   129篇
  2006年   106篇
  2005年   141篇
  2004年   96篇
  2003年   97篇
  2002年   70篇
  2001年   53篇
  2000年   45篇
  1999年   42篇
  1998年   44篇
  1997年   36篇
  1996年   26篇
  1995年   13篇
  1994年   22篇
  1993年   25篇
  1992年   17篇
  1991年   16篇
  1990年   21篇
  1989年   21篇
  1988年   9篇
  1987年   17篇
  1986年   13篇
  1985年   28篇
  1984年   46篇
  1983年   31篇
  1982年   25篇
  1981年   21篇
  1980年   18篇
  1979年   16篇
  1978年   15篇
  1977年   15篇
  1976年   9篇
  1973年   8篇
排序方式: 共有6716条查询结果,搜索用时 31 毫秒
61.
62.
In a study of Necturus gallbladder epithelium Benzel et al. (Benzel et al., 1980) found that low (0.2–1.2 M) and higher concentrations (1.5 M and more) of cytochalasin B (CB) caused an increase and decrease in the transepithelial electrical resistance (TER), respectively. Moreover, there were slight changes in the height and complexicity of tight junction (TJ) strands, as visualized by freeze-fracture and freeze-etching. To elucidate the mechanisms of these findings, we first demonstrated that the effect is also present in monolayers of Madin-Darby Canine Kidney strain I (MDCK-I) cells. Thus, a low concentration (0.1 ng/ml) cytochalasin B (CB) strengthened the permeability barrier, as evidenced quantitatively by increases in TER on transepithelial electrical measurements. Furthermore, indirect immunofluorescence and confocal microscopy demonstrated that this effect was paralleled with an accumulation of F-actin and the tight junction marker protein, ZO-1, at the level of TJ. Equimolar concentrations of dihydrocytochalasin B (dhCB), on the other hand, did not lead to a tightening of the epithelium. Confirming previous studies, there was a general decrease in epithelial resistance after treatment with high concentrations (1 g/ml) of CB and dhCB, which was accompanied by distinct changes in the F-actin network and distribution of ZO-1. We speculate that the divergent effects of CB and dhCB on the F-actin and ZO-1 organization might be due to specific effects on the transport of monosaccharides across the plasma membrane, or that CB and dhCB in distinct ways involve the turnover of phosphatidylinositols in the membrane, thereby modulating junctional permeability and F-actin structure.  相似文献   
63.
The sporophyte-gametophyte junction in Acaulon muticum is composed of the sporophyte foot, the surrounding gametophyte vaginula, and an intervening placental space. At an early stage of development the foot has a large basal cell, characterized by extensive wall ingrowths beginning at the lowermost tip of the basal cell and extending along its tangential walls. Sporophyte cells in contact with the basal cell develop ingrowths on their outer tangential walls and on radial walls in contact with the basal cell. All sporophyte cells at this stage are characterized by numerous mitochondria, strands of endoplasmic reticulum, and dictyosomes, particularly in the cytoplasm adjacent to areas of extensive wall development. Plastids typically contain abundant starch reserves. As development proceeds, wall ingrowths become more extensive on all walls in the sporophyte foot but are never found on the upper wall of the basal cell in contact with the remainder of the sporophyte. Plastids in the foot contain fewer starch reserves later in development. Wall ingrowths are not visible in the cells of the gametophyte vaginula until well after extensive development has occurred in the sporophyte foot. Stacks or layers of endoplasmic reticulum are characteristic of the cells of the gametophyte vaginula, along with numerous mitochondria, dictyosomes, and well-developed plastids. Starch reserves typically are less abundant in cells of the gametophyte. The early development of extensive wall elaborations in the cells of the sporophyte foot, and particularly in the basal cell, may favor the rapid movement of water and nutrients from the gametophyte into the sporophyte at a time when rapid development in this minute, ephemeral moss is critical.  相似文献   
64.
Various hypotheses have been put forward to explain the presence of sclerophyllous plant disjuncts between western North America and the Mediterranean region. The Madrean–Tethyan hypothesis postulates that the two regions were floristically connected in the Early to Middle Tertiary by way of a low-latitude migration route. Others deny the possibility of such a route, and instead postulate convergence to xerophytic conditions from more widespread mesophytic ancestors, or suggest long-distance dispersal scenarios. One example of a “Madrean–Tethyan link” between the two regions is composed of four species within the genus Styrax: S. officinalis subsp. officinalis from the Mediterranean region, S. officinalis subsp. redivivus and subsp. fulvescens from California, and three closely related species in Texas and northeastern Mexico (S. texanus, S. platanifolius, and S. youngiae). This group was examined with isozymes to assess whether patterns of genetic variation are consistent with those predicted by the Madrean–Tethyan hypothesis. Ten populations from California, six from the Mediterranean region, and three from Texas were sampled. Pairwise comparisons revealed mean genetic identity (I) estimates of 0.581 between Mediterranean and California populations, 0.470 between Mediterranean and Texas populations, and 0.640 between California and Texas populations. Two populations of a species thought by many to be the closest relative of S. officinalis on morphological grounds (S. jaliscanus) exhibited low I (0.299–0.321) relative to all other group comparisons. Intercontinentally disjunct populations of S. officinalis possessed an I value that warrants species status for the Californian and Mediterranean groups. Divergence time estimates between Madrean and Tethyan Styrax range from 5.0 to 13.8 Mya, too recent to be consistent with the Madrean–Tethyan hypothesis. However, alternative explanations for this disjunction are suboptimal in that they require the invocation of either long-distance dispersal, which appears unlikely in this group, or extinction. Nonetheless, the evidence presented here and in other recent studies casts substantial doubt on the Madrean–Tethyan hypothesis as a general explanation for the presence of Madrean and Tethyan taxa similar in overall appearance. More plants with Madrean–Tethyan distributions must be sampled before definitive conclusions regarding this aspect of Madrean and Tethyan vegetation can be reached.  相似文献   
65.
Regulation of gap junction coupling in the developing neocortex   总被引:4,自引:0,他引:4  
In the developing mammalian, neocortex gap junctions represent a transient, metabolic, and electrical communication system. These gap junctions may play a crucial role during the formation and refinement of neocortical synaptic circuitries. This article focuses on two major points. First, the influence of gap junctions on electrotonic cell properties will be considered. Both the time-course and the amplitude of synaptic potentials depend,inter alia, on the integration capabilities of the postsynaptic neurons. These capabilities are, to a considerable extent, determined by the electrotonic characteristics of the postsynaptic cell. As a consequence, the efficacy of chemical synaptic inputs may be crucially affected by the presence of gap junctions. The second major topic is the regulation of gap junctional communication by neurotransmitters via second messenger pathways. The monoaminergic neuromodulators dopamine, nordrenaline, and serotonin reduce gap junction coupling via activation of two different intracellular signaling cascades—the cAMP/protein kinase A pathway and the IP3/Ca2+/protein kinase C pathway, 013 respectively. In addition, gap junctional communication seems to be modulated by the nitric oxide (NO)/cGMP system. Since NO production can be stimulated by glutamate-induced calcium influx, the NO/cGMP-dependent modulation of gap junctions might represent a functional link between developing glutamatergic synaptic transmission and the gap junctional network. Thus, it might be of particular importance in view of a role of gap junctions during the process of circuit formation.  相似文献   
66.
Gap junction-mediated intercellular communication was analyzed in a model system in which tissue necrosis and remodeling could be modulated. This in vitro system, previously used for analysis of epithelial-mesenchymal tissue interaction, was modified to permit analysis of the presence and extent of intercellular communition by monitoring intercellular transfer of the micro-injected fluorescent dye, Lucifer Yellow. Light and transmission electronmicroscopy were employed to correlate the presence and degree of gap junctional communication (coupling) with tissue morphology. Digital image analysis was used to determine cell density and mitotic indices within the outgrowths of explants. Our results indicated that cell communication in outgrowths adjacent to necrotic foci within an explant was minimal or absent. Cell-coupling in outgrowths adjacent to a compartment of viable mesenchyme was significantly higher-equivalent to unseparated control cultures. A time-course study demonstrated correlation of increased levels of cell-coupling in outgrowths with the level of tissue remodeling within an explant. Our conclusions from these studies are that embryonic mesenchymal cell populations may be selectively uncoupled as a result of alterations in the microenvironment produced by a proximate impaired cell population. It is proposed that endogenous factors in the microenvironment (wound signals), emanating from impaired cell populations, regulate gap junction-mediated intercellular communication in adjacent viable tissue. Normal, unimpaired populations of cells surrounding an area of injury are thereby isolated from the effects of a potentially toxic environment. This could serve as a protective function in development and may represent, in a more general sense, part of the repertoire of events associated with tissue repair and remodeling.  相似文献   
67.
68.
We have examined the distribution and extent of phosphorylation of the tight junction-associated protein ZO-1 in the epithelial MDCK cell line, and in three cell types that do not form tight junctions: S180 (sarcoma) cells, S180 cells transfected with E-cadherin (S180L), and primary cultures of astrocytes. In shortterm calcium chelation experiments on MDCK cells, removal of extracellular calcium caused cells to pull apart. However, ZO-1 remained concentrated at the plasma membrane and no change in ZO-1 phosphorylation was observed. Maintenance of MDCK cells in low calcium medium, conditions where no tight junctions are found, resulted in altered ZO-1 distribution and lower total phosphorylation of the protein. In S180 cells, ZO-1 was diffusely distributed along the entire cell surface, with concentration of the antigen in motile regions of the cell. Cell-cell contact was not a prerequisite for ZO-1 localization at the plasma membrane in this cell type, and the phosphate content of ZO-1 was found to be lower in S180 cells relative to MDCK cells. Expression of Ecadherin in S180L cells did not alter either the distribution or phosphorylation of ZO-1. In contrast to S180 cells, ZO-1 in primary cultures of astrocytes was concentrated at sites of cell-cell contact, and the phosphorylation state was the same as that in control MDCK cells. Comparison of one-dimensional proteolytic digests of 32P-labeled ZO-1 revealed the phosphorylation of two peptides in control MDCK cells that was absent in both MDCK cells grown in low calcium and in S180 cells.We would like to thank Cheryl Richards for her help with the cell culture and immunohistochemistry; David Begg, Gary Firestone, Vik Maraj, Manijeh Pasdar and Colin Rasmussen for helpful discussions; Jaclyn Peebles and Greg Morrison for help with graphics and photography; and Grace Martin and Bob Campenot for rat tail collagen. We are grateful to all the members of our laboratories for their friendship, advice and support. This work was supported by an Establishment Award to B.R.S. from the Alberta Heritage Foundation for Medical Research and grants to B.R.S. from the Kidney Foundation of Canada and the Medical Research Council of Canada. A.H. is funded by a Studentship from the AHFMR. K.L.S. was supported by a grant from the National Institutes of Health (DK-42799) to Gary L. Firestone. B.R.S. is a Medical Research Council of Canada and AHFMR Scholar.  相似文献   
69.
Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction–coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body–containing lacunae with each other and with the outside world. During differentiation from osteoblast to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are (1) osteocytes are actively involved in bone turnover; (2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and (3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations. © 1994 Wiley-Liss, Inc.  相似文献   
70.
The bovine tubouterine junction is composed of three parts (terminal tubal segment, transition region proper, uterine apex) and follows a sigmoidal course displaying a tubal and an uterine curvature. In the terminal tubal segment, 4–8 primary longitudinal folds and a system of lower secondary folds, ridges and chords project into the centrally located lumen. The transition region proper possesses a slit-like lumen because of the existence of a thick mucosal pad containing the first uterine glands. The longitudinal primary folds of the tube broaden, flatten and start to diverge when they reach the transition region proper. The mucosal pad and broadened folds are heavily vascularized. A system of lateral outpocketings with blind ends pointing in an ampullary direction develops between the primary and secondary folds, the ridges and chords of the terminal tubal segment and transition region proper. From the bottom of these outpocketings, short tubulo-alveolar crypts originate. The mucosa of the uterine apex forms low transversal ridges. The musculature of the bovine tubouterine junction is divided into a continuous circular or spiral intermediate layer, flanked by inner and outer longitudinal layers. The outer longitudinal layer is incomplete in the terminal tubal segment but increases in thickness to form a continuous stratum in the uterine apex. An inner longitudinal layer occurs only in the terminal tubal segment where it is best developed in the bases of the primary longitudinal folds. The simple columnar surface epithelium of the tubouterine junction contains ciliated and non-ciliated cells. The former undergo cyclical changes, and increase during estrus and postestrus. During proestrus, groups of non-ciliated cells display bulbous apical protrusions. During proestrus and estrus, circumscribed epithelial lesions expose the underlying basal lamina.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号