首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   33篇
  国内免费   29篇
  750篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   17篇
  2019年   18篇
  2018年   11篇
  2017年   22篇
  2016年   23篇
  2015年   14篇
  2014年   21篇
  2013年   20篇
  2012年   14篇
  2011年   22篇
  2010年   28篇
  2009年   29篇
  2008年   27篇
  2007年   39篇
  2006年   54篇
  2005年   39篇
  2004年   24篇
  2003年   21篇
  2002年   26篇
  2001年   23篇
  2000年   23篇
  1999年   14篇
  1998年   14篇
  1997年   5篇
  1996年   24篇
  1995年   12篇
  1994年   14篇
  1993年   20篇
  1992年   9篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   11篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   9篇
  1981年   10篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
排序方式: 共有750条查询结果,搜索用时 15 毫秒
81.
The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling.  相似文献   
82.
83.
Phragmites australis (Common reed) occurs in the interface between water and land. The water depth gradient from deep water to dry land is inversely related to litter accumulation. Eutrophication can result in an excessive production of litter, which may have a large impact on the occurrence of P. australis in this gradient. In an outdoor pot experiment, it was investigated how water tables in combination with substrates containing variable amounts of litter affect morphology and productivity of P. australis. Vegetatively propagated P. australis was grown in pots filled with river sand, litter, and different mixtures of sand and litter (25, 50 and 75% by volume). Four water table treatments were applied; drained (–12 cm), waterlogged (0 cm), flooded (+12 cm), and weekly fluctuating drained and flooded conditions (–12/+12 cm of water relative to substrate level). When drained, no differences between substrate treatments were present. Waterlogging, flooding fluctuating water table treatments caused growth reduction in substrate containing litter. The plants formed short shoots and thin rhizomes. With increasing water table, allocation of dry matter to stems increased at the expense of leaves and rhizomes. At intermediate levels of litter in the substrate, allocation to leaves was lowest. In both instances a lower leaf weight ratio (LWR) was (partly) compensated for by a higher specific leaf area (SLA), resulting in less pronounced differences in leaf area ratio (LAR). Aquatic roots developed when plants were waterlogged or flooded, and increased when litter was present in the substrate. Aquatic roots were formed in the top soil layer when waterlogged. The percentage of aquatic roots increased with increasing amount of litter in the substrate when plants were flooded. It was concluded that the morphological responses of P. australis to litter strongly constrain its ability to maintain itself in deep water when the substrate contains litter. This might one of the explanations for the disappearance of P. australis along the waterward side of littoral zones.  相似文献   
84.
为了探求合适的水体砷污染修复植物及砷在食物链中传递、累积的特点,以常见的沉水植物-苦草为研究对象,对受砷污染的水体进行修复,结果表明:苦草对水环境中砷的富集能在较短的时间内(3 d)达到一个较大值,到第14天,不同砷水平(2 mg/L)处理下的苦草对砷富集系数均超过200;苦草中砷浓度随处理时间及外源砷浓度的增加而增加,且与外源砷浓度之间存在极显著地正相关;苦草在不同浓度砷处理下都生长良好,对砷胁迫表现出较强的耐受性。因此,苦草对于水体的砷污染有着很好的去除效果,同时也能很好地反映出一个地区的砷污染水平。  相似文献   
85.
Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.  相似文献   
86.
Abstract This study documents the fish and decapod crustaceans inhabiting a bed of Gracilaria verrucosa that was drifting on the bottom of a temperate marine embayment in relatively deep water (15- 18m) during autumn 1991. Fauna were sampled with diver-operated enclosure nets. Relatively few species inhabited the algae at this time, and the assemblage was primarily a subset of that in adjacent Posidonia australis beds. Three fish species [Neoodax balteatus (Odacidae), Cristiceps australis (Clinidae), Siphamia cephalotes (Apogonidae)] and one species of crab [Nectocarcinus tuberculosus (Portunidae)] dominated the catches numerically. A further 14 fish and decapod species were relatively rare. Neoodax balteatus, C. australis and N. tuberculosus were caught at all life stages and appeared to be permanent residents of the Gracilaria. Few juveniles of other species were captured, which indicates that these algal wracks may not be an important nursery habitat for seasonally resident fish species. Trachurus novaezelandiae and a number of other fish species that associate with a variety of benthic habitats appeared to be transient visitors. The biomass of algae varied significantly within the bed, but algal biomass was not a good indicator of faunal abundances. The low species richness of the fish and decapod crustacean assemblage may be related to both lower recruitment in deeper water and to unfavourable characteristics of the alga.  相似文献   
87.
鄱阳湖水生维管束植物生物量及其合理开发利用的初步建议   总被引:13,自引:2,他引:13  
用4种不同的计算方法测定了鄱阳湖水生维管束植物的生物量。根据22个断面,199个采集点,398个样方的测定结果,得出鄱阳湖水生维管束植物的年生产量为431.76万吨(湿重),即相当于5.44×10~(-15)焦耳(能量)。其中,马来眼子菜、苦草和黑藻等3种合计约占总生物量的71.46%。全湖可供草食性鱼类食用的水生维管束植物约占总量的86.9%。文中还对4个植物带和9个群丛生物量的分布规律进行了讨论。提出了人工增殖草食性鱼类,调整湖中植被组成,保护和种植水生经济植物等合理开发利用鄱阳湖水生植物资源的初步建议。  相似文献   
88.
The potential importance of the six major emergent and floating-leaved macrophyte species in recycling of sediment phosphorus in the Loosdrecht lakes was studied. Representative plant samples were collected at the time of maximum biomass, and analysed for biomass and carbon, nitrogen and phosphorus contents. Species cover was determined by aerial photography.Total cover in the seven lakes studied ranged between 2 and 26 percent. For the four main species, biomass per unit area increased with lake trophic status. Consistent differences in C, N and P contents per unit biomass were not observed. Although cover values were small, significant amounts of C, N and P were contained in the macrophytes when compared with maximum sestonic content.Potential P loads from macrophyte decay were calculated. In Lake Loosdrecht, the P load represented 15 percent of current external P inputs. The potential importance of macrophyte decay to P recycling in the other lakes is greater.Decay of macrophyte species at the end of the growing season appears to affect autumnal nutrient and chlorophyll a levels in the water column of some lakes. The re-establishment of submerged species following lake restoration may increase the importance of this pathway in the lakes.  相似文献   
89.
We quantitatively studied the effect of submerged plants on water quality and biota under fish-free conditions for 3 weeks in four large freshwater experimental ponds (533 m3 per pond) at the Aqua Restoration Research Center, Japan. Two artificially harvested ponds with scant vegetation were used as “harvested ponds” (H1, H2), and the other two ponds, which were naturally dominated by Hydrilla verticillata, were used as “vegetated ponds” (V1, V2). The PVI (percent water volume infested with macrophytes) was employed as an index of vegetation abundance. Vegetated ponds had much clearer water than harvested ponds. The water quality in H2 (PVI 10%) was better than in H1 (PVI 3%), whereas the water quality did not differ significantly between the two vegetated ponds (V1, PVI 38% and V2, PVI 84%). Therefore, the threshold between clear water and turbidity was between 10 and 38% in PVI. Our result also showed that a turbid water state was created shortly after harvest. Green algae were abundant in the harvested ponds, and diatoms were dominant in the vegetated ponds. Rotifers were stably dominant in the harvested ponds. Aquatic worms were more abundant in the harvested ponds than in the vegetated ponds. Unexpectedly, zooplanktons were much less abundant in the vegetated ponds; therefore, zooplankton grazing was not the main mechanism behind the cleaner water in our experiment. These results are physical evidence that the presence of dense macrophytes was the main factor in the creation of a clear water state.  相似文献   
90.
The catchment areas of transboundary streams in the Netherlands have been subject to increasing agricultural and industrial activities over the past decades. To evaluate the effects of these activities on the aquatic vegetation, a study has been carried out in 28 Dutch transboundary lowland streams. Recent data on distribution of 58 aquatic plant species and their growth forms were compared with historical data and were correlated with abiotic variables. Most of these streams lost species that are characteristic for streams and are sensitive to turbidity, eutrophication and pollution (e.g. Potamogeton alpinus, P. polygonifolius, P. densus, Ranunculus peltatus ssp. heterophyllus, Callitriche stagnalis and Myriophyllum alterniflorum.) Species, not common in streams but tolerant to turbidity, eutrophication or pollution (e.g. Potamogeton trichoides, Elodea nuttallii) appeared in many streams or increased in abundance. There was also a shift in growth forms: submerged species decreased or were replaced by emergent/floating-leaved species. Correspondence analysis was carried out to study the relation between the observed changes and the abiotic characteristic of the streams. The magnitude of the shift in species composition was positively correlated with the PO4 3- concentration and pH (which was highly correlated with Cd2+) of the water. This leads to the hypothesis that increased input of sewage, agricultural and industrial water causes a change in species composition and main growth forms of aquatic plant species in lowland streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号