首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   33篇
  国内免费   29篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   17篇
  2019年   18篇
  2018年   11篇
  2017年   22篇
  2016年   23篇
  2015年   14篇
  2014年   21篇
  2013年   20篇
  2012年   14篇
  2011年   22篇
  2010年   28篇
  2009年   29篇
  2008年   27篇
  2007年   39篇
  2006年   54篇
  2005年   39篇
  2004年   24篇
  2003年   21篇
  2002年   26篇
  2001年   23篇
  2000年   23篇
  1999年   14篇
  1998年   14篇
  1997年   5篇
  1996年   24篇
  1995年   12篇
  1994年   14篇
  1993年   20篇
  1992年   9篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   11篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   9篇
  1981年   10篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
排序方式: 共有750条查询结果,搜索用时 515 毫秒
41.
《Plant Ecology & Diversity》2013,6(2-3):217-229
Background: Urbanisation filters species in communities depending on their adaptability to conditions in built-up areas, especially in semi-natural habitats. Roadside vegetation is widespread along urban-rural gradients and is therefore a good place to study landscape-scale factors influencing plant community composition.

Aim: Our study aimed to assess how plant species distributions vary between urban and rural landscape contexts and to identify biological traits favoured in urban areas.

Methods: Presence/absence data for 63 indigenous common species were collected in 296 road verge patches distributed along the urban–rural gradient in three French cities. We investigated the effects of landscape composition on species assemblages and related individual species responses to urbanisation to functional traits associated with dispersal and persistence capacity.

Results: Many grassland species were negatively affected by increasing proportion of built-up areas in the landscape. Insect-pollination and high seed production appeared to be key traits favoured in grassland communities in urban areas, whereas dispersal modes were less related to plant distribution.

Conclusions: This study has demonstrated that urban filters affect common species of widespread, managed road verges. Better knowledge of the flora of these herbaceous roadsides may contribute to the conservation of common biodiversity within other grassland habitats found in urban areas.  相似文献   
42.
43.
44.
The fungal infection caused by Batrachochytrium dendrobatidis (Bd) in amphibians is known to be lethal when infection intensity values exceed loads of 10,000 zoospores per individual. We investigated Bd infection intensity in 100 anurans of southern Brazil. Almost half of the individuals were infected and the intensity ranged from four to about 156,000 zoospore genomic equivalents. We found no clinical signs of chytridiomycosis and no evidence of mortality. However, we observed a reduction in the number of infected individuals with loads above 10,000 zoospores. This fact could be considered indirect evidence that individuals with high loads are removed from the population.  相似文献   
45.
Abstract

Increased nitrogen and phosphorus pollution causes eutrophication in water bodies. Using aquatic plants to remove nutrients from water is an attractive phytoremediation. It is a cost-effective, environment-friendly, and efficient way that reduces water body eutrophication by the plant. It is important to choose suitable macrophytes to remove excess N and P under different nutrient conditions. In this study, six macrophyte species (Polygonum orientale, Juncus effuses, Iris pseudocorus, Phragmites australis, Iris sanguinea, Typha orientalis) were tested. Simulation experiment was conducted under five N and P levels. The removal rate, relative growth rate, and the dynamic nutrition concentration of cultivated solution were investigated. Of all the treatment, a 23–95% reduction in N removal and a 29–92% reduction in P removal were recorded. The results showed I. sanguinea is a promising species to treat various eutrophic waters and the other five species can be used specifically to treat certain types of water. The data provided a theoretical guidance to plant species selection for phytoremediation of polluted water bodies for the purpose of water quality improvement around the different reservoir in northern China.  相似文献   
46.
47.
《Current biology : CB》2019,29(22):3838-3850.e3
  1. Download : Download high-res image (221KB)
  2. Download : Download full-size image
  相似文献   
48.
Modifications of the Illinois River and associated tributaries have resulted in altered hydrologic cycles and persistent river‐floodplain connections during the growing season that frequently impede the establishment of hydrophytic vegetation and have reduced value for migratory waterfowl and other waterbirds. To help guide floodplain restoration, we compared energetic carrying capacity for waterfowl in two wetland complexes along the Illinois River under different management regimes during 2012–2015. The south pool of Chautauqua National Wildlife Refuge (CNWR) was seasonally flooded due to a partial river connection and managed for moist‐soil vegetation. Emiquon Preserve was hydrologically isolated from the Illinois River by a high‐elevation levee and managed as a semipermanently flooded emergent marsh. Semipermanent emergent marsh management at Emiquon Preserve produced 5,495 energetic use‐days (EUD)/ha for waterfowl and other waterbirds across wetland cover types and years, and seasonal moist‐soil management at CNWR produced 6,199 EUD/ha in one of 4 years. At Emiquon Preserve, the aquatic bed cover type produced 9,660 EUD/ha, followed by 5,261 EUD/ha in moist‐soil, 1,398 EUD/ha in persistent emergent, 1,185 EUD/ha in hemi‐marsh, and 12 EUD/ha in open water cover types. At CNWR, the annual grass and sedge cover type produced 7,031 EUD/ha, followed by 5,618 EUD/ha in annual broadleaf and 1,305 EUD/ha in perennial grass cover types. Restoration of floodplain wetlands in isolation from frequent flood pulses during the growing season can produce hemi‐marsh and aquatic bed vegetation communities that provide high‐quality habitat for waterfowl and which have been mostly eliminated from large river systems in the Midwest, U.S.A.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号