首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3094篇
  免费   158篇
  国内免费   154篇
  2024年   3篇
  2023年   33篇
  2022年   70篇
  2021年   83篇
  2020年   64篇
  2019年   122篇
  2018年   103篇
  2017年   67篇
  2016年   67篇
  2015年   96篇
  2014年   224篇
  2013年   258篇
  2012年   177篇
  2011年   225篇
  2010年   189篇
  2009年   201篇
  2008年   156篇
  2007年   180篇
  2006年   152篇
  2005年   154篇
  2004年   83篇
  2003年   90篇
  2002年   65篇
  2001年   51篇
  2000年   34篇
  1999年   39篇
  1998年   38篇
  1997年   33篇
  1996年   38篇
  1995年   27篇
  1994年   24篇
  1993年   30篇
  1992年   19篇
  1991年   19篇
  1990年   17篇
  1989年   13篇
  1988年   12篇
  1987年   13篇
  1986年   18篇
  1985年   26篇
  1984年   14篇
  1983年   14篇
  1982年   16篇
  1981年   14篇
  1980年   8篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1975年   4篇
  1974年   3篇
排序方式: 共有3406条查询结果,搜索用时 15 毫秒
81.
基于体细胞胚胎发生技术平台,利用携带pSuper1300+质粒,以潮霉素为筛选标记基因的农杆菌GV3101介导日本落叶松遗传转化,对植物受体材料生理状态、农杆菌浓度和浸染时间以及共培养时间等影响因素进行了研究、分析和讨论.结果表明:综合优化各影响因素,生长旺盛的日本落叶松胚性细胞,经浓度为0.4(OD600)的农杆菌浸染10min,共培养2d,再用含400mg/L的头孢霉素的液体培养基清洗脱菌,然后在含400mg/L的头孢霉素固体培养基上恢复培养,并置于含5mg/L潮霉素的固体培养基上多次筛选,最终共获得54个抗性细胞系,转化率平均为0.94个/g.PCR检测鉴定,所有抗性细胞系均为阳性转化体,并排除了农杆菌污染导致的假阳性.研究建立并优化了农杆菌介导的日本落叶松遗传转化技术,为进行遗传改良和基因功能鉴定提供有利平台.  相似文献   
82.
83.
《Epigenetics》2013,8(7):1007-1017
The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.  相似文献   
84.
85.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   
86.
Based on bioinformatics interrogation of the genome, > 500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4′-methyl-N2-3-pyridinyl-4,5′-bi-1,3-thiazole-2,2′-diamine (JNK Docking (JD) compound 123, but not the related compound (4′-methyl-N ~ 2 ~ -(6-methyl-2-pyridinyl)-4,5′-bi-1,3-thiazole-2,2′-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10 μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.  相似文献   
87.
88.
An interdisciplinary approach employing functionalized nanoparticles and ultrasensitive spectroscopic techniques is reported here to track the molecular changes in early stage of malignancy. Melanoma tissue tracking at molecular level using both labelled and unlabelled silver and gold nanoparticles has been achieved using surface enhanced Raman scattering (SERS) technique. We used skin tissue from ex vivo mice with induced melanoma. Raman and SERS molecular characterization of melanoma tissue is proposed here for the first time. Optical nanosensors based on Ag and Au nanoparticles with chemisorbed cresyl violet molecular species as labels revealed sensitive capability to tissues tagging and local molecular characterization. Sensitive information originating from surrounding native biological molecules is provided by the tissue SERS spectra obtained either with visible or NIR laser line. Labelled nanoparticles introduced systematic differences in tissue response compared with unlabelled ones, suggesting that the label functional groups tag specific tissue components revealed by proteins or nucleic acids bands. Vibrational data collected from tissue are presented in conjunction with the immunohistochemical analysis. The results obtained here open perspectives in applied plasmonic nanoparticles and SERS for the early cancer diagnostic based on the appropriate spectral databank.  相似文献   
89.
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young''s modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young''s modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号