首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   128篇
  国内免费   133篇
  2024年   3篇
  2023年   24篇
  2022年   63篇
  2021年   68篇
  2020年   45篇
  2019年   97篇
  2018年   84篇
  2017年   54篇
  2016年   52篇
  2015年   77篇
  2014年   200篇
  2013年   211篇
  2012年   156篇
  2011年   207篇
  2010年   175篇
  2009年   175篇
  2008年   136篇
  2007年   160篇
  2006年   124篇
  2005年   130篇
  2004年   63篇
  2003年   71篇
  2002年   44篇
  2001年   38篇
  2000年   26篇
  1999年   30篇
  1998年   29篇
  1997年   21篇
  1996年   24篇
  1995年   15篇
  1994年   11篇
  1993年   19篇
  1992年   14篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   13篇
  1984年   5篇
  1983年   9篇
  1982年   9篇
  1981年   14篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
排序方式: 共有2771条查询结果,搜索用时 187 毫秒
101.
102.
103.
Transforming growth factor-beta (TGF-beta) superfamily signaling has been implicated in many developmental processes, including pancreatic development. Previous studies are conflicting with regard to an exact role for TGF-beta signaling in various aspects of pancreatic organogenesis. Here we have investigated the role of TGF-beta isoform signaling in embryonic pancreas differentiation and lineage selection. The TGF-beta isoform receptors (RI, RII and ALK1) were localized mainly to both the pancreatic epithelium and mesenchyme at early stages of development, but then with increasing age localized to the pancreatic islets and ducts. To determine the specific role of TGF-beta isoforms, we functionally inactivated TGF-beta signaling at different points in the signaling cascade. Disruption of TGF-beta signaling at the receptor level using mice overexpressing the dominant-negative TGF-beta type II receptor showed an increase in endocrine precursors and proliferating endocrine cells, with an abnormal accumulation of endocrine cells around the developing ducts of mid-late stage embryonic pancreas. This pattern suggested that TGF-beta isoform signaling may suppress the origination of secondary transition endocrine cells from the ducts. Secondly, TGF-beta isoform ligand inhibition with neutralizing antibody in pancreatic organ culture also led to an increase in the number of endocrine-positive cells. Thirdly, hybrid mix-and-match in vitro recombinations of transgenic pancreatic mesenchyme and wild-type epithelium also led to increased endocrine cell differentiation, but with different patterns depending on the directionality of the epithelial-mesenchymal signaling. Together these results suggest that TGF-beta signaling is important for restraining the growth and differentiation of pancreatic epithelial cells, particularly away from the endocrine lineage. Inhibition of TGF-beta signaling in the embryonic period may thus allow pancreatic epithelial cells to progress towards the endocrine lineage unchecked, particularly as part of the secondary transition of pancreatic endocrine cell development. TGF-beta RII in the ducts and islets may normally serve to downregulate the production of beta cells from embryonic ducts.  相似文献   
104.
105.
FAN (factor associated with neutral sphingomyelinase [N-SMase] activation) exhibits striking structural homologies to Lyst (lysosomal trafficking regulator), a BEACH protein whose inactivation causes formation of giant lysosomes/Chediak-Higashi syndrome. Here, we show that cells lacking FAN show a statistically significant increase in lysosome size (although less pronounced as Lyst), pointing to previously unrecognized functions of FAN in regulation of the lysosomal compartment. Since FAN regulates activation of N-SMase in complex with receptor for activated C-kinase (RACK)1, a scaffolding protein that recruits and stabilizes activated protein kinase C (PKC) isotypes at cellular membranes, and since an abnormal (calpain-mediated) downregulation/membrane recruitment of PKC has been linked to the defects observed in Lyst-deficient cells, we assessed whether PKC is also of relevance in FAN signaling. Our results demonstrate that activation of PKC is not required for regulation of N-SMase by FAN/RACK1. Conversely, activation of PKC and recruitment/stabilization by RACK1 occurs uniformly in the presence or absence of FAN (and equally, Lyst). Furthermore, regulation of lysosome size by FAN is not coupled to an abnormal downregulation/membrane recruitment of PKC by calpain. Identical results were obtained for Lyst, questioning the previously reported relevance of PKC for formation of giant lysosomes and in Chediak-Higashi syndrome. In summary, FAN mediates activation of N-SMase as well as regulation of lysosome size by signaling pathways that operate independent from activation/membrane recruitment of PKC.  相似文献   
106.
Dewor M  Steffens G  Krohn R  Weber C  Baron J  Bernhagen J 《FEBS letters》2007,581(24):4734-4742
MIF was recently redefined as an inflammatory cytokine, which functions as a critical mediator of diseases such as septic shock, rheumatoid arthritis, atherosclerosis, and cancer. MIF also regulates wound healing processes. Given that fibroblast migration is a central event in wound healing and that MIF was recently demonstrated to promote leukocyte migration through an interaction with G-protein-coupled receptors, we investigated the effect of MIF on fibroblast migration in wounded monolayers in vitro. Transient but not permanent exposure of primary mouse or human fibroblasts with MIF significantly promoted wound closure, a response that encompassed both a proliferative and a pro-migratory component. Importantly, MIF-induced fibroblast activation was accompanied by an induction of calcium signalling, whereas chronic exposure with MIF down-regulated the calcium transient, suggesting receptor desensitization as the underlying mechanism.  相似文献   
107.
108.
Ren QG  Liao XM  Chen XQ  Liu GP  Wang JZ 《FEBS letters》2007,581(7):1521-1528
Dysfunction of proteasome contributes to the accumulation of the abnormally hyperphosphorylated tau in Alzheimer's disease. However, whether tau hyperphosphorylation and accumulation affect the activity of proteasome is elusive. Here we found that a moderate tau phosphorylation activated the trypsin-like activity of proteasome, whereas further phosphorylation of tau inhibited the activity of the protease in HEK293 cells stably expressing tau441. Furthermore, tau hyperphosphorylation could partially reverse lactacystin-induced inhibition of proteasome. These results suggest that phosphorylation of tau plays a dual role in modulating the activity of proteasome.  相似文献   
109.
110.
BACKGROUND: The antiepileptic drugs (AEDs) phenytoin, phenobarbital, dimethadione, and carbamazepine cause a similar pattern of malformations in humans, with an increased risk after polytherapy. The teratogenicity has been linked to cardiac rhythm disturbances and hypoxic damage as a consequence of their common potential to inhibit a specific potassium ion current (IKr). The IKr is of major importance for embryonic cardiac repolarization and rhythm regulation. This study investigated whether these AEDs cause irregular rhythm and if various combinations of AEDs result in higher arrhythmia risk than exposure to a single AED. METHODS: The effects on heart rhythm of a single AED (monotherapy), and of various combinations (polytherapy) of AEDs, in gestational day 10 C57BL mouse embryos in culture were analyzed and graphically illustrated during a 25 s recording with a digitalization technique. RESULTS: All of the studied AEDs caused increased intervals between heartbeats (resulting in bradycardia) and large variations in the interval between heartbeats (resulting in irregular rhythm) in a concentration-dependent manner in cultured mouse embryos. Dimethadione caused irregular rhythm at concentrations within and phenytoin slightly above the therapeutic ranges. Polytherapy resulted in more substantial prolongation of the mean interval between heartbeats (>60 ms) than monotherapy at clinically relevant concentrations. CONCLUSIONS: The results suggest that polytherapy more than monotherapy causes substantial prolongation of the cardiac repolarization, a marker associated with high risk of developing irregular rhythm during longer exposure periods (days to months). This supports the idea that the increased risk for malformations following polytherapy is linked to an increased risk for cardiac rhythm disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号