首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5547篇
  免费   314篇
  国内免费   301篇
  2023年   65篇
  2022年   97篇
  2021年   136篇
  2020年   121篇
  2019年   216篇
  2018年   176篇
  2017年   123篇
  2016年   110篇
  2015年   156篇
  2014年   346篇
  2013年   384篇
  2012年   289篇
  2011年   346篇
  2010年   272篇
  2009年   316篇
  2008年   268篇
  2007年   312篇
  2006年   291篇
  2005年   266篇
  2004年   175篇
  2003年   185篇
  2002年   140篇
  2001年   109篇
  2000年   88篇
  1999年   101篇
  1998年   91篇
  1997年   76篇
  1996年   90篇
  1995年   71篇
  1994年   70篇
  1993年   92篇
  1992年   64篇
  1991年   51篇
  1990年   44篇
  1989年   45篇
  1988年   39篇
  1987年   35篇
  1986年   35篇
  1985年   36篇
  1984年   55篇
  1983年   27篇
  1982年   25篇
  1981年   32篇
  1980年   23篇
  1979年   21篇
  1978年   9篇
  1977年   14篇
  1976年   7篇
  1975年   7篇
  1972年   5篇
排序方式: 共有6162条查询结果,搜索用时 250 毫秒
901.
902.
903.
本文对来源于美国、墨西哥和中国的144份不同玉米自交系幼胚胚性愈伤组织的再生能力相关性状进行了研究,发现其再生能力受到环境、基因型及环境与基因型互作三方面的影响。其中各性状之间的相关性表现为:绿点率(green embryonic callus rate, GCR)、分化率(embryonic callus differentiating rate, CDR)及再生绿苗数(the plantlet number of embryonic callus regeneration, CPN)之间呈极显著正相关,且这三者与褐化率(embryonic callus browning rate, CBR)呈极显著负相关; 两次继代的克隆指数(embryonic callus cloning index for the first subculture, CCI1; embryonic callus cloning index for the second subculture, CCI2)呈显著正相关,且CCI2与GCR有一定的正相关关系,与CBR呈负相关关系;生根率(embryonic callus rooting rate, CRR)则与GCR、CDR及CPN呈一定正相关。经过广义遗传力计算发现:胚性愈伤组织的两次继代克隆指数CCI1、CCI2和CRR的遗传力较低,其他性状的遗传力较高。此外,经Ward法双向聚类分析,共发现了11个具有高再生能力的自交系材料,且通过生根培养发现其再生绿苗的生根情况良好,因而可将它们作为玉米转基因受体的骨干自交系。  相似文献   
904.
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non‐homologous end‐joining (cNHEJ) is largely error‐free, alternative end‐joining pathways have been described that are intrinsically mutagenic. Which end‐joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9‐induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta‐mediated end‐joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end‐joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double‐strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ‐dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.  相似文献   
905.
目的:研究子宫内膜癌组织中生长分化因子15(GDF-15)和磷酸化哺乳动物雷帕霉素靶蛋白(p-mTOR)的表达,并分析其临床意义,为临床治疗提供依据。方法:选取2011年1月到2016年2月我院子宫内膜癌组织75例为研究组,另选取同期正常子宫内膜组织75例为对照组,应用免疫组化法检测GDF-15和p-mTOR蛋白的表达。结果:研究组GDF-15和p-mTOR蛋白的表达阳性率显著高于对照组,比较差异具有统计学意义(P0.05);子宫内膜癌分期Ⅲ-Ⅳ期、淋巴结转移者、病理分级G2+G3、肌层浸润深度≥1/2的GDF-15和p-mTOR蛋白的表达阳性率均较高(P0.05);子宫内膜癌组织GDF-15与p-mTOR蛋白表达呈正相关关系(P0.05)。结论:子宫内膜癌组织中GDF-15与p-mTOR蛋白表达升高,且与肿瘤转移、临床分期、肌层浸润深度有关。  相似文献   
906.
Human embryonic stem cells (hESCs) can self‐renew and differentiate into all cell lineages. E2 is known to exhibit positive effects on embryo development. Although the importance of E2 in many physiological processes has been reported, to date few researchers have investigated the effects of E2 on hESCs differentiation. We studied the effects of E2 on dopamine (DA) neuron induction of hESCs and its related signalling pathways using the three‐stage protocol. In our study, 0.1 μM E2 were applied to hESCs‐derived human embryoid bodies (hEBs) and effects of E2 on neural cells differentiation were investigated. Protein and mRNA level assay indicated that E2 up‐regulated the expression of insulin‐like growth factors (IGF)‐1, ectoderm, neural precursor cells (NPC) and DA neuron markers, respectively. The population of hESC‐derived NPCs and DA neurons was increased to 92% and 93% to that of DMSO group, respectively. Furthermore, yield of DA neuron‐secreted tyrosine hydroxylase (TH) and dopamine was also increased. E2‐caused promotion was relieved in single inhibitor (ICI or JB1) group partly, and E2 effects were repressed more stronger in inhibitors combination (ICI plus JB1) group than in single inhibitor group at hEBs, hNPCs and hDA neurons stages. Owing to oestrogen receptors regulate multiple brain functions, when single or two inhibitors were used to treat neural differentiation stage, we found that oestrogen receptor (ER)β but not ERα is strongly repressed at the hNPCs and hDA neurons stage. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2‐improved hNPC and hDA neuron differentiation through cross‐talk between IGF‐1 and ERβ in vitro.  相似文献   
907.
Stable isotope analysis has been extensively used as an effective tool in determination of trophic relationship in ecosystems. In freshwater ecosystem, aquatic invertebrates represent main component of a river food web. This study was carried out to determine potential food sources of freshwater organism together with pattern of trophic position along the river food web. In this study, rivers of Belum-Temengor Forest Complex (BTFC) has been selected as sampling site as it is a pristine area that contains high diversity and abundance of organisms and can be a benchmark for other rivers in Malaysia. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were applied to estimate trophic position and food web paradigm. Analysis of stable isotopes based on organic material collected from the study area revealed that the highest δ13C value was reported from filamentous algae (? 22.68 ± 0.1260/00) and the lowest δ13C was in allocthonous leaf packs (? 31.58 ± 0.1870/00). Meanwhile the highest δ15N value was in fish (8.45 ± 0.1770/00) and the lowest value of δ15N was in autochthonous aquatic macrophyte (2.00 ± 1.2340/00). Based on the δ15N results, there are three trophic levels in the study river and it is suggested that the trophic chain begins with organic matter followed by group of insects and ends with fish (organic matter < insects < fish).  相似文献   
908.
Advances in molecular analyses based on high-throughput technologies can contribute to a more accurate classification of non–small cell lung cancer (NSCLC), as well as a better prediction of both the disease course and the efficacy of targeted therapies. Here we set out to analyze whether global gene expression profiling performed in a group of early-stage NSCLC patients can contribute to classifying tumor subtypes and predicting the disease prognosis. Gene expression profiling was performed with the use of the microarray technology in a training set of 108 NSCLC samples. Subsequently, the recorded findings were validated further in an independent cohort of 44 samples. We demonstrated that the specific gene patterns differed significantly between lung adenocarcinoma (AC) and squamous cell lung carcinoma (SCC) samples. Furthermore, we developed and validated a novel 53-gene signature distinguishing SCC from AC with 93% accuracy. Evaluation of the classifier performance in the validation set showed that our predictor classified the AC patients with 100% sensitivity and 88% specificity. We revealed that gene expression patterns observed in the early stages of NSCLC may help elucidate the histological distinctions of tumors through identification of different gene-mediated biological processes involved in the pathogenesis of histologically distinct tumors. However, we showed here that the gene expression profiles did not provide additional value in predicting the progression status of the early-stage NSCLC. Nevertheless, the gene expression signature analysis enabled us to perform a reliable subclassification of NSCLC tumors, and it can therefore become a useful diagnostic tool for a more accurate selection of patients for targeted therapies.  相似文献   
909.
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   
910.
Aims One critical challenge for plants is to maintain an adequate nutrient supply under fluctuating environmental conditions. This is particularly true for epiphytic species that have limited or no access to the pedosphere and often live in harsh climates. Bromeliads have evolved key innovations such as epiphytism, water-absorbing leaf trichomes, tank habit and Crassulacean acid metabolism (CAM) photosynthesis that enable them to survive under various environmental conditions. Bromeliads encompass diverse ecological types that live on different substrates (they can be terrestrial, epilithic or epiphytic) and vary in their ability to retain water (they can be tank-forming or tankless) and photosynthetic pathway (i.e. C3 or CAM). In this review, we outline the nutritional modes and specializations that enable bromeliads to thrive in a wide range of nutrient-poor (mostly nitrogen-depleted) environments.Important findings Bromeliads have evolved a great diversity of morphologies and functional adaptations leading to the existence of numerous nutritional modes. Focusing on species that have absorptive foliar trichomes, we review evidence that bromeliads have evolved multi-faceted nutritional strategies to respond to fluctuations in the supply of natural nitrogen (N). These plants have developed mutualistic associations with many different and functionally diverse terrestrial and aquatic microorganisms and metazoans that contribute substantially to their mineral nutrition and, thus, their fitness and survival. Bacterial and fungal microbiota-assisted N provisioning, protocarnivory, digestive mutualisms and myrmecotrophic pathways are the main strategies used by bromeliads to acquire nitrogen. The combination of different nutritional pathways in bromeliads represents an important adaptation enabling them to exploit nutrient-poor habitats. Nonetheless, as has been shown for several other vascular plants, multiple partners are involved in nutrient acquisition indicating that there have been convergent adaptations to nutrient scarcity. Finally, we point out some gaps in the current knowledge of bromeliad nutrition that offer fascinating research opportunities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号