首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5681篇
  免费   727篇
  国内免费   157篇
  2024年   4篇
  2023年   120篇
  2022年   117篇
  2021年   189篇
  2020年   247篇
  2019年   332篇
  2018年   268篇
  2017年   316篇
  2016年   305篇
  2015年   257篇
  2014年   279篇
  2013年   503篇
  2012年   182篇
  2011年   311篇
  2010年   203篇
  2009年   324篇
  2008年   347篇
  2007年   312篇
  2006年   289篇
  2005年   208篇
  2004年   246篇
  2003年   183篇
  2002年   143篇
  2001年   133篇
  2000年   97篇
  1999年   76篇
  1998年   95篇
  1997年   70篇
  1996年   64篇
  1995年   72篇
  1994年   54篇
  1993年   66篇
  1992年   56篇
  1991年   24篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   11篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1979年   3篇
排序方式: 共有6565条查询结果,搜索用时 93 毫秒
51.
Many microbial and cell cultures exhibit phenomena that can best be described using a segregated modeling approach. Heterogeneties are more marked in recombinant cell cultures because subpopulations, which often exhibit different growth and productivity characteristics, are more easily identified by selective markers. A simple segregated mathematical model that simulates the growth of recombinant Escherichia coli cells is developed. Subpopulations of different growth rate, plasmid replication rate, and plasmid segregation probability are explicitly considered. Results indicate that a third mechanism of plasmid instability, referred to here as a "downward selective pressure," is significant when describing plasmid loss in batch and chemostat cultures. Also, the model agrees well with experimental data from cultures under antibiotic selective pressure. Finally, model simulations of chemostat cultures reveal the importance of initial conditions on culture stability and the possible presence of nonrandom partitioning functions. (c) 1993 John Wiley & Sons, Inc.  相似文献   
52.
The complete three-dimensional structure of the bean seed storage protein phaseolin was generated from -carbon coordinates by using molecular mechanic calculations. This structure was used as a template to simulate modifications aimed at increasing the methionine content of phaseolin. A hydrophilic, methionine-rich looping insert sequence was designed. Simulated mutagenesis shows that the insert might be accommodated in turn and loop regions of the protein, but not within an -helix. Methionine content was also increased by the replacement of hydrophobic amino acids with methionine in the central core -barrels of the phaseolin protein. Calculations indicated that methionine can effectively replace conserved or variant leucine, isolecuine, and valine residues. However, alanine residues were much more sensitive to substitution, and demonstrated high variability in the effects of methionine replacement. Introduction of multiple substitutions in the barrel interior demonstrated that the replaced residues could interact favorably to relieve local perturbations caused by individual substitutions. Molecular dynamics simulations were also utilized to study the structural organization of phaseolin. The calculations indicate that there are extensive packing interactions between the major domains of phaseolin, which have important implications for protein folding and stability. Since the proposed mutant proteins can be produced and studied, the results presented here provide an ideal test to determine if there is a correlation between the effects obtained by computer simulation and the effects of the mutations on the protein structure expressedin vivo.  相似文献   
53.
The world's primates have been severely impacted in diverse and profound ways by anthropogenic pressures. Here, we evaluate the impact of various infrastructures and human-modified landscapes on spatial patterns of primate species richness, at both global and regional scales. We overlaid the International Union for the Conservation of Nature (IUCN) range maps of 520 primate species and applied a global 100 km2 grid. We used structural equation modeling and simultaneous autoregressive models to evaluate direct and indirect effects of six human-altered landscapes variables (i.e., human footprint [HFP], croplands [CROP], road density [ROAD], pasture lands [PAST], protected areas [PAs], and Indigenous Peoples' lands [IPLs]) on global primate species richness, threatened and non-threatened species, as well as on species with decreasing and non-decreasing populations. Two-thirds of all primate species are classified as threatened (i.e., Critically Endangered, Endangered, and Vulnerable), with ~86% experiencing population declines, and ~84% impacted by domestic or international trade. We found that the expansion of PAST, HFP, CROP, and road infrastructure had the most direct negative effects on primate richness. In contrast, forested habitat within IPLs and PAs was positively associated in safeguarding primate species diversity globally, with an even stronger effect at the regional level. Our results show that IPLs and PAs play a critical role in primate species conservation, helping to prevent their extinction; in contrast, HFP growth and expansion has a dramatically negative effect on primate species worldwide. Our findings support predictions that the continued negative impact of anthropogenic pressures on natural habitats may lead to a significant decline in global primate species richness, and likely, species extirpations. We advocate for stronger national and international policy frameworks promoting alternative/sustainable livelihoods and reducing persistent anthropogenic pressures to help mitigate the extinction risk of the world's primate species.  相似文献   
54.

Aim

Climate change is affecting the distribution of species and subsequent biotic interactions, including hybridization potential. The imperiled Golden-winged Warbler (GWWA) competes and hybridizes with the Blue-winged Warbler (BWWA), which may threaten the persistence of GWWA due to introgression. We examined how climate change is likely to alter the breeding distributions and potential for hybridization between GWWA and BWWA.

Location

North America.

Methods

We used GWWA and BWWA occurrence data to model climatically suitable conditions under historical and future climate scenarios. Models were parameterized with 13 bioclimatic variables and 3 topographic variables. Using ensemble modeling, we estimated historical and modern distributions, as well as a projected distribution under six future climate scenarios. We quantified breeding distribution area, the position of and amount of overlap between GWWA and BWWA distributions under each climate scenario. We summarized the top explanatory variables in our model to predict environmental parameters of the distributions under future climate scenarios relative to historical climate.

Results

GWWA and BWWA distributions are projected to substantially change under future climate scenarios. GWWA are projected to undergo the greatest change; the area of climatically suitable breeding season conditions is expected to shift north to northwest; and range contraction is predicted in five out of six future climate scenarios. Climatically suitable conditions for BWWA decreased in four of the six future climate scenarios, while the distribution is projected to shift east. A reduction in overlapping distributions for GWWA and BWWA is projected under all six future climate scenarios.

Main Conclusions

Climate change is expected to substantially alter the area of climatically suitable conditions for GWWA and BWWA, with the southern portion of the current breeding ranges likely to become climatically unsuitable. However, interactions between BWWA and GWWA are expected to decline with the decrease in overlapping habitat, which may reduce the risk of genetic introgression.  相似文献   
55.
Development and use of probability models: The industry perspective   总被引:1,自引:0,他引:1  
Summary In the processed meat industry, food safety and microbiological shelf life issues lend themselves to the use of probability modeling. Our research concentrated on predicting the effectiveness of sodium lactate as an antibotulinal agent in vacuum packaged, uncured and cured turkey breast model systems. In uncured turkey breast containing 1.4% NaCl, 0.3% Na phosphate, and 0–3% Na lactate, the antibotulinal effect of sodium lactate can be predicted using the following model: Days to toxicity = 3.13+0.39(Na lactate)2. Using cured turkey breast with 0.3% Na phosphate, 0.2% sucrose, 0–3% Na lactate, the time to toxicity can be predicted from the following model: Days to toxicity = 1.69+4.88(NaCl)–11.16(Na lactate)+7.23(Na lactate)2. Probability models have also been developed to predict the refrigerated shelf life of specific processed meat products. The usefulness of the predictive modeling for food safety and quality in the food industry will also be discussed.This paper was presented at The International Conference on the Application of Predictive Microbiology and Computer Modeling Techniques to the Food Industry, April 12–15 1992, Hyatt Regency Hotel, Tampa, FL, USA.  相似文献   
56.
Krupa  Sagar V.  Kickert  Ronald N. 《Plant Ecology》1993,104(1):223-238
Man's influence on the greenhouse effect, the heating of the atmosphere due to increasing concentrations of tropospheric trace gases, is of much international concern. Among the climatic variables, elevated levels of carbon dioxide (CO2), ultraviolet-B (UV-B) radiation and ozone (O3) are known to have a direct effect on vegetation. Our current knowledge of these effects is mainly based on studies involving single stress mode. Thus, the joint effects of CO2, UV-B and O3 on vegetation are poorly understood. Nevertheless, based on the literature analysis of plant response to individual stress factors, it can be concluded that sorghum, pea, bean, potato, oat, lettuce, cucumber, rice and tomato are among the crop species potentially sensitive to the joint effects of the aforementioned three variables. Similar information for tree species is essentially lacking.At least with some climatic variables such as O3, present modeling efforts of cause-effect relationships have proven to be controversial. While at a regional geographic scale ambient CO2 concentrations appear to be relatively homogeneous, ambient concentrations of O3 exhibit significant temporal and spatial variability. Because of the protective action of O3 against UV-B, similar but inverse temporal and spatial variability is expected in the surface levels of UV-B. Thus, future experimental designs should consider these exposure dynamics and modeling cuase-effect relationships should be directed to stochastic processes.  相似文献   
57.
Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism–environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.  相似文献   
58.
Although it is known that three-dimensional structure is well conserved during the evolutionary development of proteins, there have been few studies that consider other parameters apart from divergence of the main-chain coordinates. In this study, we align the structures of 90 pairs of homologous proteins having sequence identities ranging from 5 to 100%. Their structures are compared as a function of sequence identity, including not only consideration of C alpha coordinates but also accessibility, Ooi numbers, secondary structure, and side-chain angles. We discuss how these properties change as the sequences become less similar. This will be of practical use in homology modeling, especially for modeling very distantly related or analogous proteins. We also consider how the average size and number of insertions and deletions vary as sequences diverge. This study presents further quantitative evidence that structure is remarkably well conserved in detail, as well as at the topological level, even when the sequences do not show similarity that is significant statistically.  相似文献   
59.
We present an automated method incorporated into a software package, FOLDER, to fold a protein sequence on a given three-dimensional (3D) template. Starting with the sequence alignment of a family of homologous proteins, tertiary structures are modeled using the known 3D structure of one member of the family as a template. Homologous interatomic distances from the template are used as constraints. For nonhomologous regions in the model protein, the lower and the upper bounds for the interatomic distances are imposed by steric constraints and the globular dimensions of the template, respectively. Distance geometry is used to embed an ensemble of structures consistent with these distance bounds. Structures are selected from this ensemble based on minimal distance error criteria, after a penalty function optimization step. These structures are then refined using energy optimization methods. The method is tested by simulating the alpha-chain of horse hemoglobin using the alpha-chain of human hemoglobin as the template and by comparing the generated models with the crystal structure of the alpha-chain of horse hemoglobin. We also test the packing efficiency of this method by reconstructing the atomic positions of the interior side chains beyond C beta atoms of a protein domain from a known 3D structure. In both test cases, models retain the template constraints and any additionally imposed constraints while the packing of the interior residues is optimized with no short contacts or bond deformations. To demonstrate the use of this method in simulating structures of proteins with nonhomologous disulfides, we construct a model of murine interleukin (IL)-4 using the NMR structure of human IL-4 as the template. The resulting geometry of the nonhomologous disulfide in the model structure for murine IL-4 is consistent with standard disulfide geometry.  相似文献   
60.
A new method has been developed to compute the probability that each amino acid in a protein sequence is in a particular secondary structural element. Each of these probabilities is computed using the entire sequence and a set of predefined structural class models. This set of structural classes is patterned after Jane Richardson''s taxonomy for the domains of globular proteins. For each structural class considered, a mathematical model is constructed to represent constraints on the pattern of secondary structural elements characteristic of that class. These are stochastic models having discrete state spaces (referred to as hidden Markov models by researchers in signal processing and automatic speech recognition). Each model is a mathematical generator of amino acid sequences; the sequence under consideration is modeled as having been generated by one model in the set of candidates. The probability that each model generated the given sequence is computed using a filtering algorithm. The protein is then classified as belonging to the structural class having the most probable model. The secondary structure of the sequence is then analyzed using a "smoothing" algorithm that is optimal for that structural class model. For each residue position in the sequence, the smoother computes the probability that the residue is contained within each of the defined secondary structural elements of the model. This method has two important advantages: (1) the probability of each residue being in each of the modeled secondary structural elements is computed using the totality of the amino acid sequence, and (2) these probabilities are consistent with prior knowledge of realizable domain folds as encoded in each model. As an example of the method''s utility, we present its application to flavodoxin, a prototypical alpha/beta protein having a central beta-sheet, and to thioredoxin, which belongs to a similar structural class but shares no significant sequence similarity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号