首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   22篇
  国内免费   34篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   11篇
  2015年   16篇
  2014年   29篇
  2013年   27篇
  2012年   21篇
  2011年   13篇
  2010年   24篇
  2009年   9篇
  2008年   28篇
  2007年   15篇
  2006年   22篇
  2005年   24篇
  2004年   21篇
  2003年   26篇
  2002年   25篇
  2001年   13篇
  2000年   10篇
  1999年   8篇
  1998年   19篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1994年   13篇
  1993年   7篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
排序方式: 共有465条查询结果,搜索用时 750 毫秒
21.
Electroporation has become a widely used method for rapidly and efficiently introducing foreign DNA into a wide range of cells. Electrotransformation has become the method of choice for introducing DNA into prokaryotes that are not naturally competent. Electroporation is a rapid, efficient, and streamlined transformation method that, in addition to purified DNA and competent bacteria, requires commercially available gene pulse controller and cuvettes. In contrast to the pulsing step, preparation of electrocompetent cells is time consuming and labor intensive involving repeated rounds of centrifugation and washes in decreasing volumes of sterile, cold water, or non-ionic buffers of large volumes of cultures grown to mid-logarithmic phase of growth. Time and effort can be saved by purchasing electrocompetent cells from commercial sources, but the selection is limited to commonly employed E. coli laboratory strains. We are hereby disseminating a rapid and efficient method for preparing electrocompetent E. coli, which has been in use by bacteriology laboratories for some time, can be adapted to V. cholerae and other prokaryotes. While we cannot ascertain whom to credit for developing the original technique, we are hereby making it available to the scientific community.  相似文献   
22.
In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field‐induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Bioelectromagnetics 34:253–263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
23.
24.
25.
The in ovo electroporation technique in chicken embryos has enabled investigators to uncover the functions of numerous developmental genes. In this technique, the ubiquitous promoter, CAGGS (CMV base), has often been used for overexpression experiments. However, if a given gene plays a role in multiple steps of development and if overexpression of this gene causes fatal consequences at the time of electroporation, its roles in later steps of development would be overlooked. Thus, a technique with which expression of an electroporated DNA can be controlled in a stage-specific manner needs to be formulated. Here we show for the first time that the tetracycline-controlled expression method, "tet-on" and "tet-off", works efficiently to regulate gene expression in electroporated chicken embryos. We demonstrate that the onset or termination of expression of an electroporated DNA can be precisely controlled by timing the administration of tetracycline into an egg. Furthermore, with this technique we have revealed previously unknown roles of RhoA, cMeso-1 and Pax2 in early somitogenesis. In particular, cMeso-1 appears to be involved in cell condensation of a newly forming somite by regulating Pax2 and NCAM expression. Thus, the novel molecular technique in chickens proposed in this study provides a useful tool to investigate stage-specific roles of developmental genes.  相似文献   
26.
The in ovo electroporation in chicken embryos has widely been used as a powerful tool to study roles of genes during embryogenesis. However, the conventional electroporation technique fails to retain the expression of transgenes for more than several days because transgenes are not integrated into the genome. To overcome this shortcoming, we have developed a transposon-mediated gene transfer, a novel technique in chicken manipulations. It was previously reported that the transposon Tol2, originally found in medaka fish, facilitates an integration of a transgene into the genome when co-acting with Tol2 transposase. In this study, we co-electroporated a plasmid containing a CAGGS-EGFP cassette cloned in the Tol2 construct along with a transposase-encoding plasmid into early presomitic mesoderm or optic vesicles of chicken embryos. This resulted in persistent expression of EGFP at least until embryonic day 8 (E8) and E12 in somite-derived tissues and developing retina, respectively. The integration of the transgene was confirmed by genomic Southern blotting using chicken cultured cells. We further combined this transposon-mediated gene transfer with the tetracycline-dependent conditional expression system that we also developed recently. With this combined method, expression of a stably integrated transgene could be experimentally induced upon tetracycline administration at relatively late stages such as E6, where a variety of organogenesis are underway. Thus, the techniques proposed in this study provide a novel approach to study the mechanisms of late organogenesis, for which chickens are most suitable model animals.  相似文献   
27.
BACKGROUND: It has previously been demonstrated that high levels of gene expression in skeletal muscles can be achieved after direct in vivo electrotransfer of naked plasmid DNA. The purpose of this study is to examine the potential of in vivo electroporation of plasmid DNA encoding human IL-1Ra for the prevention of murine collagen-induced arthritis (CIA). METHODS: DBA/1 mice were injected in gastrocnemius muscles with plasmid DNA followed by in vivo electroporation. To uncover the optimum conditions of gene transfer, various electric field strengths and different amounts of plasmid DNA were applied. Calf muscles around the injected areas were investigated with histological methods for damage to muscle tissue. The levels of human IL-1Ra expression in the injected area and also in the serum were determined with ELISA for human IL-1Ra. Based on these data, the effects of electrotransfer of plasmid DNA were tested using the murine CIA model. DBA/1 mice were immunized with bovine collagen type II at the base of the tail. On day 21, mice were given a booster injection with the same antigen. Mice were divided into two groups on day 26. One group of mice received plasmid containing the IL-1Ra cDNA sequence, while control mice were given plasmid lacking the IL-1Ra coding sequence. The incidence of arthritis was evaluated by macroscopic analysis, histological analysis, and the levels of inflammatory cytokines. RESULTS: IL-1Ra expression increased as a function of the electrical field strength and the amount of DNA. 200 V/cm (eight pulses; 20 ms per pulse; 1 Hz) and 15 microg of plasmid DNA per mouse were found to be optimum for gene transfer. After in vivo electroporation, gene expression in both muscle and serum increased gradually, reaching a peak value on day 10. Significant levels of human IL-1Ra expression were maintained for 20 days. Macroscopic analysis showed that the onset of CIA was significantly inhibited by direct electrotransfer of plasmid DNA encoding human IL-1Ra. Histological analysis of knee joints showed that the incidence of arthritis in knee joints was also prevented. The levels of mouse IL-1beta and IL-12 in paws were significantly lower in the group treated with IL-1Ra than those in the control group. CONCLUSIONS: These results demonstrate that direct electrotransfer of plasmid containing the human IL-1Ra cDNA sequence to skeletal muscle can reduce the incidence of CIA in mice.  相似文献   
28.
BACKGROUND: Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage. METHODS: Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer. RESULTS: Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage. CONCLUSION: Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA.  相似文献   
29.
30.
In vivo electroporation (EP) of the murine interleukin-12 (IL-12) gene in an expression plasmid (pIL-12) was evaluated for antitumor activity. EP transfer of pIL-12 into mouse quadriceps muscles elicited significant levels of serum IL-12 and interferon-gamma. Intramuscular EP of pIL-12 resulted in complete regression or substantial inhibition of 38C13 B-cell lymphoma, whereas pIL-12 delivered by gene gun or intramuscular injection without EP showed little therapeutic effect. Impressive antitumor activity by intramuscular EP was also demonstrated in animals with advanced malignant disease. At day 14 after 38C13 tumor inoculation, all animals were found to carry large tumors and to have metastases; without treatment, most died within a week. A single intramuscular EP of pIL-12 resulted in regression of 50% of large subcutaneous tumors and significantly prolonged the lifespan of these animals. Moreover, animals that were previously cured of 38C13 tumors by in vivo EP treatment significantly suppressed tumor growth when challenged 60 days later. In vivo EP of the IL-12 gene was also effective in suppressing subcutaneous and lung metastatic tumors of CT-26 colon adenocarcinoma and B16F1 melanoma cells. Together, these results show that intramuscular electrotransfer of the IL-12 gene may represent a simple and effective strategy for cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号