首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23158篇
  免费   1320篇
  国内免费   929篇
  2023年   265篇
  2022年   417篇
  2021年   505篇
  2020年   524篇
  2019年   567篇
  2018年   743篇
  2017年   462篇
  2016年   545篇
  2015年   649篇
  2014年   1059篇
  2013年   1367篇
  2012年   671篇
  2011年   1129篇
  2010年   953篇
  2009年   1241篇
  2008年   1246篇
  2007年   1221篇
  2006年   1131篇
  2005年   1062篇
  2004年   902篇
  2003年   710篇
  2002年   734篇
  2001年   520篇
  2000年   419篇
  1999年   452篇
  1998年   452篇
  1997年   369篇
  1996年   379篇
  1995年   342篇
  1994年   366篇
  1993年   286篇
  1992年   275篇
  1991年   255篇
  1990年   242篇
  1989年   245篇
  1988年   183篇
  1987年   188篇
  1986年   170篇
  1985年   195篇
  1984年   284篇
  1983年   215篇
  1982年   221篇
  1981年   198篇
  1980年   200篇
  1979年   154篇
  1978年   111篇
  1977年   107篇
  1976年   121篇
  1975年   81篇
  1973年   106篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
91.
In vivo effect of abscisic acid (ABA) on photosynthetic oxygen evolution was investigated in barley chloroplasts. The most important kinetic parameters of O2-producing reactions were changed. The results show inhibition of the O2-flash yields at ABA concentrations of 10 mol/l and 100 mol/l and an increase in the degree of damping of the oscillations. ABA has a marked effect on the distribution of the oxygenevolving centers in S0 and S1 states and on sum of the centers (S0+S1) estimated according to the Kok model. In addition, the amplitude and the shape of the initial oxygen burst under continuous illumination are also significantly altered. At a concentration of 100 mol/l, ABA strongly inhibits Hill reaction activity measured by DCPIP reduction. The results cannot be explained by the hypothesis of socalled stomata effect. On the other hand, no effects were observed on the investigated parameters in experiments involving ABA applied in vitro to isolated chloroplasts. It is hypothesized that ABA disrupts the granal chloroplasts structure and raises the degree of participation of the cooperative mechanism of O2-evolution connected with the functioning of PS II centers in the stroma situated thylakoids.Abbreviations DCPIP 2,6-Dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenil)-1,1-dimethylurea - HEPES N-2-Hydroxyethylpiperazine-N-2-ethane sulfonic acid - PSII photosystem II - RubisCO Ribulose-1,5-bis-phosphate carboxylase-oxygenase  相似文献   
92.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   
93.
We have measured the extent of flash-induced electron transfer from the bacteriochlorophyll dimer, P, to the bacteriopheophytin in the M-subunit, HM, in reaction centers of Rhodopseudomonas viridis. This has been done by measuring the transient states produced by excitation of reaction centers trapped in the PHL HM state at 90 K. Under these conditions the normal forward electron transfer to the bacteriopheophytin in the L-subunit, HL, is blocked and the yield of transient P+HM can be estimated with respect to the lifetime of P*. Under these conditions flash induced absorbance decreases of the bacteriochlorophyll dimer 990 nm band suggest that a transient P+ state is formed with a quantum yield of 0.09±0.06 compared to that formed during normal photochemistry. These transient measurements provide an upper limited on the yield of a transient P+ HM state. An estimate of 0.09 as the yield of the P+ HM state is consistent with all current observations. This estimate and the lifetime of P* suggest that the electron transfer rate from P* to HM, kM, is about 5 × 109 sec–1 (M = 200ps). These measurements suggest that the a branching ratio kL/kM is on the order of 200. The large value of the branching ratio is remarkable in view of the structural symmetry of the reaction center. This measurement should be useful for electron transfer calculations based upon the reaction center structure.  相似文献   
94.
We investigated several photosynthetic parameters of a virescent mutant of durum wheat and of its wild-type. Electron transport rate to ferricyanide was the same in the two genotypes when expressed on leaf area basis while O2 evolution of the leaf tissue in saturating light and CO2 was slightly higher in the yellow genotype. RuBPCase was also slightly higher. Quantum yield per absorbed light was similar in the two genotypes. P700 and Cyt f were less concentrated in the mutant while PS II was only marginally lower. The light response curve of CO2 assimilation indicated higher level of photosynthesis of the mutant in high light, which corresponded to a lower non-photochemical quenching compared to the wild-type. It is concluded that the reaction centres, cyt f and chlorophyll are not limiting factors of electron transport in wheat seedlings and that electron transport capacity is in excess with respect to that needed for driving photosynthesis. Since the differences in photosynthesis reflect differences in RuBPCase activity, it is suggested that this enzyme limits photosynthesis in wheat seedlings also at high light intensities.Abbreviations cyt f cytochrome f - chl chlorophyll - PS II photosystem II - Pnmax maximum photosynthesis - RuBCase Ribulose, 1-5,bisphosphate carboxylase  相似文献   
95.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   
96.
The temperature dependence of the partial reactions leading to turn-over of the UQH2:cyt c 2 oxidoreductase of Rhodobacter sphaeroides have been studied. The redox properties of the cytochrome components show a weak temperature dependence over the range 280–330 K, with coefficients of about 1 m V per degree; our results suggest that the other components show similar dependencies, so that no significant change in the gradient of standard free-energy between components occurs over this temperature range. The rates of the reactions of the high potential chain (the Rieske iron sulfur center, cytochromes c 1 and c 2, reaction center primary donor) show a weak temperature dependence, indicating an activation energy < 8 kJ per mole for electron transfer in this chain. The oxidation of ubiquinol at the Qz-site of the complex showed a strong temperature dependence, with an activation energy of about 32 kJ mole–1. The electron transfer from cytochrome b-566 to cytochrome b-561 was not rate determining at any temperature, and did not contribute to the energy barrier. The activation energy of 32 kJ mole–1 for quinol oxidation was the same for all states of the quinone pool (fully oxidized, partially reduced, or fully reduced before the flash). We suggest that the activation barrier is in the reaction by which ubiquinol at the catalytic site is oxidized to semiquinone. The most economical scheme for this reaction would have the semiquinone intermediate at the energy level indicated by the activation barrier. We discuss the plausibility of this simple model, and the values for rate constants, stability constant, the redox potentials of the intermediate couples, and the binding constant for the semiquinone, which are pertinent to the mechanism of the ubiquinol oxidizing site.Abbreviations (BChl)2 P870, primary donor of the photochemical reaction center - b/c 1 complex ubiquinol: cytochrome c 2 oxidoreductase - cyt b H cytochrome b-561 or higher potential cytochrome b - cyt b L cytochrome b-566, or low potential cytochrome b - cyt c 1, cyt c 2, cyt c t cytochromes c 1 and c 2, and total cytochrome c (cyt c 1 and cyt c 2) - Fe.S Rieske-type iron sulfur center, Q - QH2 ubiquinone, ubiquinol - Qz, QzH2, Qz ubiquinone, ubiquinol, and semiquinone anion of ubiquinone, bound at quinol oxidizing site - Qz-site ubiquinol oxidizing site (also called Qo-(outside) - Qo (Oxidizing) - QP (Positive proton potential) site) - Qc-site uubiquinone reductase site (also called the Qi-(inside) - QR (Reducing), or - QN (Negative proton potential) site) - UHDBT 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazol  相似文献   
97.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   
98.
Absorbance changes induced by 25-ps laser flashes were measured in membranes of Heliobacterium chlorum at 15 K. Absorbance difference spectra, measured at various times after the flash showed negative bands in the Qy region at 812, 793 and 665 nm. The first of these bands was attributed to the formation of excited singlet states of a long-wavelength form of antenna bacteriochlorophyll g (BChl g 808). Absorbance changes of shorter wavelength absorbing antenna BChls g were at least an order of magnitude smaller, indicating rapid excitation energy transfer (i.e. within the time resolution of the apparatus) from these BChls to BChl g 808. Excited BChl g 808 showed a bi-exponential decay with time constants of 50 and 200 ps. The bands at 793 and 665 nm may be attributed to the primary charge separation and reflect the photooxidation of the primary electron donor P-798 and photoreduction of a primary electron acceptor absorbing near 670 nm, presumably a BChl c or Chl a-like pigment. The bleaching of this pigment reversed with a time constant of 300 ps at 15 K and of 800 ps at 300 K. This indicates that electron transfer from the primary to the secondary electron acceptor is approximately 2.5 times faster at 15 K than at room temperature.Abbreviations BChl bacteriochlorophyll - FWHM full width at half maximum - P-798 primary electron donor - Tris tris(hydroxymethyl)amino methane  相似文献   
99.
Time-resolved fluorescence on lumazine protein from Photobacterium phosphoreum was performed with synchrotron radiation as a source of continuously tunable excitation. The experiments yielded structural and dynamic details from which two aspects became apparent. From fluorescence anisotropy decay monitoring of lumazine fluorescence with different excitation wavelengths, the average correlation times were shown to change, which must indicate the presence of anisotropic motion of the protein. A similar study with 7-oxolumazine as the fluorescent ligand led to comparable results. The other remarkable observation dealt with the buildup of acceptor fluorescence, also observed with 7-oxolumazine although much less pronounced, which is caused by the finite energy transfer process between the single donor tryptophan and the energy accepting lumazine derivatives. Global analytical approaches in data analysis were used to yield realistic correlation times and reciprocal transfer rate constants. It was found that the tryptophan residue has a large motional freedom as also reported previously for this protein and for the related protein from P. leiognathi (Lee et al. 1985; Kulinski et al. 1987). The average distance between the tryptophan residue and the ligand donor-acceptor couple has been determined to be 2.7 nm for the same donor and two different acceptors.  相似文献   
100.
Summary The tracheal systems of five insect species (two species of ants, worker bee, housefly and the cabbage butterfly) have been studied by scanning electron microscopy of corrosion casts. This technique, which is commonly used for the investigation of vertebrate vasculature, is adapted to demonstrate the ultrastructure of the insect respiratory organ. The problem of filling a blind ending system was solved by injecting the resin Mercox into the evacuated tracheae through a thoracal spiracle. After polymerization of the resin, the tissue was digested enzymatically and chemically. The three-dimensional structure of the tracheal system was investigated by scanning electron microscopy. The technique used here displays for the first time the complex morphology of the entire tracheal system in fine detail, especially the structure of spiracles, airsacs, tracheae and tracheoles. Smooth-walled terminal tracheoles show up in flight muscles. The finest tracheoles that could be identified have diameters of approximately 70 nm. This approaches the finest tracheoles portrayed by transmission electron micrographs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号