首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   107篇
  国内免费   31篇
  776篇
  2024年   13篇
  2023年   4篇
  2022年   6篇
  2021年   11篇
  2020年   30篇
  2019年   26篇
  2018年   27篇
  2017年   39篇
  2016年   37篇
  2015年   21篇
  2014年   35篇
  2013年   56篇
  2012年   20篇
  2011年   38篇
  2010年   14篇
  2009年   24篇
  2008年   46篇
  2007年   31篇
  2006年   30篇
  2005年   28篇
  2004年   20篇
  2003年   16篇
  2002年   21篇
  2001年   11篇
  2000年   12篇
  1999年   20篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1995年   10篇
  1994年   13篇
  1993年   12篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   8篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有776条查询结果,搜索用时 0 毫秒
101.
In this paper, a novel NO electrochemical microsensor, which is fabricated by modifying the surface of a carbon fiber microdisk electrode (CFMDE, diameter: 5-7mum) with single-walled carbon nanotubes (SWNTs) and Nafion membrane, is reported for the first time. The modification of SWNTs dramatically improves the sensitivity of CFMDEs, and the detection limit for NO is 4.3nM that is nearly 10 times lower than that from the bare one and lower than most NO electrochemical sensors reported before. The Nafion membrane offers a good barrier to some interferents such as nitrite and ascorbic acid without losing response speed to NO. The sensor has been successfully applied to the measurement of NO release from single isolated human umbilical vein endothelial cells (HUVECs). Real-time amperometric data show that the addition of l-arginine (l-arg) or acetylcholine (ACh) can cause a quick increase in NO production with a maximum concentration of 232+/-44nM (n=5) and 159+/-29nM (n=5), respectively.  相似文献   
102.
Construction, electrochemically biosensing and discrimination of recombinant pEThIL-2 plasmid, with 5839 bp size, on the basis of interleukine-2 (IL-2) DNA insert are described. Plasmid pEThIL-2 was constructed by PCR amplification of IL-2 encoding DNA and subcloning into pET21a(+) vector using BamHI and SacI sites. The recombinant pEThIL-2 plasmid was detected with a label-free DNA hybridization biosensor using a non-inosine substituted probe. The proposed sensor was made up by immobilization of a 20-mer antisense single strand oligonucleotide (chIL-2) related to the human interleukine-2 gene on the pencil graphite electrode (PGE) as a probe and then the sensing of recombinant pEThIL-2 plasmid was conducted by anodic differential pulse voltammetry (ADPV) based on guanine oxidation signal. Selectivity of the detection was assessed with pET21a(+) non-complementary plasmid, with 5443 bp size, lacking IL-2 encoding DNA. Different factors such as electrode activation conditions and washing strategy were tested in order to eliminate the nonspecific adsorption of pET21a(+). We have found that the PGE activation for 300 s produces a condition in which desorption of nonspecifically adsorbed plasmids from the electrode surface can be achieved by 300 s washing of the electrode in 20 mM Tris–HCl buffer solution (pH 7.0) containing 20 mM NaCl. Diagnostic performance of the biosensor is described and the detection limit is found to be 10.31 pg/μL.  相似文献   
103.
Li X  Shen L  Zhang D  Qi H  Gao Q  Ma F  Zhang C 《Biosensors & bioelectronics》2008,23(11):1624-1630
A simple and highly sensitive electrochemical impedance spectroscopy (EIS) biosensor based on a thrombin-binding aptamer as molecular recognition element was developed for the determination of thrombin. The signal enhancement was achieved by using gold nanoparticles (GNPs), which was electrodeposited onto a glassy carbon electrode (GCE), as a platform for the immobilization of the thiolated aptamer. In the measurement of thrombin, the change in interfacial electron transfer resistance of the biosensor using a redox couple of [Fe(CN)6]3−/4− as the probe was monitored. The increase of the electron transfer resistance of the biosensor is linear with the concentration of thrombin in the range from 0.12 nM to 30 nM. The association and dissociation rate constants of the immobilized aptamer–thrombin complex were 6.7 × 103 M−1 s−1 and 1.0 × 10−4 s−1, respectively. The association and dissociation constants of three different immobilized aptamers binding with thrombin were measured and the difference of the dissociation constants obtained was discussed. This work demonstrates that GNPs electrodeposited on GCE used as a platform for the immobilization of the thiolated aptamer can improve the sensitivity of an EIS biosensor for the determination of protein. This work also demonstrates that EIS method is an efficient method for the determination of association and dissociation constants on GNPs modified GCE.  相似文献   
104.
Wu S  Wang T  Gao Z  Xu H  Zhou B  Wang C 《Biosensors & bioelectronics》2008,23(12):1776-1780
A beta-cyclodextrin (CD) modified copolymer membrane of sulfanilic acid (p-ASA) and N-acetylaniline (SPNAANI) on glassy carbon electrode (GCE) was prepared and used to determine uric acid (UA) in the presence of a large excess of ascorbic acid (AA) by differential pulse voltammetry (DPV). The properties of the copolymer were characterized by X-ray photoelectron spectra (XPS) and Raman spectroscopy. The oxidation peaks of AA and UA were well separated at the composite membrane modified electrode in phosphate buffer solution (PBS, pH 7.4). A linear relationship between the peak current and the concentration of UA was obtained in the range from 1.0 x 10(-5) to 3.5 x 10(-4)mol L(-1), and the detection limit was 2.7 x 10(-6)mol L(-1) at a signal-to-noise ratio of 3. Two hundred and fifty-fold excess of AA did not interfere with the determination of UA. The application of the prepared electrode was demonstrated by measuring UA in human serum samples without any pretreatment, and the results were comparatively in agreement with the spectrometric clinical assay method.  相似文献   
105.
In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.  相似文献   
106.
Protein kinases are key drug targets involved in the regulation of a wide variety of cellular processes. To aid the development of drugs targeting these kinases, it is necessary to express recombinant protein in large amounts. The expression of these kinases in Escherichia coli often leads to the accumulation of the expressed protein as insoluble inclusion bodies. The refolding of these inclusion bodies could provide a route to soluble protein, but there is little reported success in this area. We set out to develop a system for the screening of refolding conditions for a model protein kinase, p38α, and applied this system to denatured p38α derived from natively folded and inclusion body protein. Clear differences were observed in the refolding yields obtained, suggesting differences in the folded state of these preparations. Using the screening system, we have established conditions under which soluble, folded p38α can be produced from inclusion bodies. We have shown that the refolding yields obtained in this screen are suitable for the economic large-scale production of refolded p38α protein kinase.  相似文献   
107.
Dong S  Zhang S  Chi L  He P  Wang Q  Fang Y 《Analytical biochemistry》2008,381(2):199-204
A carbon paste electrode modified with multiwall carbon nanotubes and copper(I) oxide (MWCNT-Cu2O CPME) was fabricated, and the electrochemical behaviors of 19 kinds of natural amino acids at this modified electrode were studied. The experimental results showed that the various kinds of amino acids without any derivatization displayed obvious oxidation current responses at the modified electrode. It was also found that the current response values of amino acids were dependent mainly on pH values of buffer solutions. The phenomenon could be explained by the fact that the amino acids suffered complexation or electrocatalytic oxidation processes under different pH values. Six kinds of amino acids (arginine, tryptophan, histidine, threonine, serine, and tyrosine), which performed high-oxidation current responses in alkaline buffers, were selected to be detected simultaneously by capillary zone electrophoresis coupled with amperometric detection (CZE-AD). These amino acids could be perfectly separated within 20 min, and their detection limits were as low as 10−7 or 10−8 mol L−1 magnitude (signal/noise ratio = 3). The above results demonstrated that MWCNT-Cu2O CPME could be successfully employed as an electrochemical sensor for amino acids with some advantages of convenient preparation, high sensitivity, and good repeatability.  相似文献   
108.
In this article, we describe the use of pH- responsive hydrogels as matrices for the immobilization of two enzymes, glucose oxidase (GOx) and glutamate oxidase (GlutOx). Spherical hydrogel beads were prepared by inverse suspension polymerization and the enzymes were immobilized by either physical entrapment or covalent immobilization within or on the hydrogel surface. Packed-bed bioreactors were prepared containing the bioactive hydrogels and these incorporated into flow injection (FI) systems for the quantitation of glucose and monosodium glutamate (MSG) respectively. The FI amperometric detector comprised a microfabricated interdigitated array within a thin-layer flow cell. For the FI manifold incorporating immobilized GOx, glucose response curves were found to be linear over the concentration range 1.8-280 mg dL(-1) (0.1-15.5 mM) with a detection limit of 1.4 mg dL(-1) (0.08 mM). Up to 20 samples can be manually analyzed per hour, with the hydrogel-GOx bioreactor exhibiting good within-day (0.19%) precision. The optimized FI manifold for MSG quantitation yielded a linear response range of up to 135 mg dL(-1) (8 mM) with a detection limit of 3.38 mg dL(-1) (0.2 mM) and a throughput of 30 samples h(-1). Analysis of commercially produced soup samples gave a within-day precision of 3.6%. Bioreactors containing these two physically entrapped enzymes retained > 60% of their initial activities after a storage period of up to 1 year.  相似文献   
109.
No significant differences were observed in the viability of Lactobacillus plantarum and Lactobacillus rhamnosus cells during freeze-drying in the presence or absence of inositol, sorbitol, fructose, trehalose, monosodium glutamate and propyl gallate. However, survival was higher during storage when drying took place in the presence of these compounds. Sorbitol produced more significant effects than the other compounds toward maintaining viability of freeze-dried L. plantarum and L. rhamnosus.  相似文献   
110.
Protein electrochemistry offers a direct method to identify and characterize biological electron transfer processes, potentially leading to commercial applications such as biosensors and diagnostic tools. However, establishing a biocompatible electrode interface that maintains the native state of the redox protein involves several challenges. In general, membrane proteins require the presence of a phospholipid bilayer to maintain their biological activity. Synthetic `biomimetic’ membranes are widely used to characterize membrane proteins, however they have seldom been applied to measurements of protein redox activity in electrochemical cells due to their inherent insulating property. In this study we demonstrate the use of the phospholipids: PC, PC/PG and PC/PG/cholesterol membrane mixtures on chemically modified (supported) gold electrode surfaces for direct protein electrochemistry. We compare the electrochemical activity of a relatively small, redox active “test protein”, cytochrome c, in the presence and absence of phospholipid on a gold electrode modified with thiol self assembled monolayers, to explore the effect of chain length and composition of the thiol on the charge coupling. Three thiols were investigated as self assembled monolayers on a gold electrode: octanethiol, mercaptopropionic and mercaptoundecanoic acid. We demonstrate here that the charge transfer efficiency of cytochrome c is better in the presence of the membrane and in addition, a superior redox response is obtained with surfaces modified with a thiol functionalised with a carboxylic acid.On leave from: Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.Australian Peptide Conference Issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号