首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   908篇
  免费   71篇
  国内免费   40篇
  2024年   2篇
  2023年   17篇
  2022年   18篇
  2021年   17篇
  2020年   34篇
  2019年   26篇
  2018年   33篇
  2017年   24篇
  2016年   39篇
  2015年   21篇
  2014年   47篇
  2013年   63篇
  2012年   23篇
  2011年   29篇
  2010年   29篇
  2009年   29篇
  2008年   48篇
  2007年   33篇
  2006年   27篇
  2005年   33篇
  2004年   16篇
  2003年   27篇
  2002年   24篇
  2001年   20篇
  2000年   16篇
  1999年   12篇
  1998年   23篇
  1997年   17篇
  1996年   19篇
  1995年   14篇
  1994年   14篇
  1993年   16篇
  1992年   19篇
  1991年   10篇
  1990年   9篇
  1989年   20篇
  1988年   18篇
  1987年   12篇
  1986年   20篇
  1985年   14篇
  1984年   13篇
  1983年   16篇
  1982年   22篇
  1981年   18篇
  1980年   6篇
  1979年   2篇
  1978年   6篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1019条查询结果,搜索用时 15 毫秒
21.
Reports on direct gene transfer have dealt with either the obtention of stable transformants and transgenic plants, or described the use of reporter genes to analyse different aspects of gene expression in plant protoplasts and conditions for their use in transient gene expression assays.
In this paper we present comparisons between several transformation techniques, show species-specific differences in efficiencies of stable transformants and in the levels of transient gene expression, and report on the identification of major parameters responsible for DNA uptake as judged from transient chloramphenicol acetyl transferase (CAT) expression levels and from efficiencies of transformation based on kanamycin-resistance. The described procedures have been simplified, optimized and standardized and should allow routine use with a great variety of plant species.  相似文献   
22.
应用细胞内微电极技术记录到37个培养大鼠搏动心肌细胞充氮前后和复氧后的电活动参数。结果提示:充氮10min后,最大舒张电位(MDP),最大除极速度(V_(max)),动作电位振幅(APA)和动作电位时程(APD)等参数明显降低;自发节律增快,并出现多种形式的节律失常。83.8%细胞在充氮后30min内停搏,16.2%在50min左右停搏。复氧后,86.5%细胞在5min内复跳,13.5%未能复跳;12.5%复跳细胞在复跳10min内再次停搏。复跳细胞的各项电活动参数在30min内未能恢复到充氮前水平(p<0.05),且呈现不同程度的各类异常电活动。本结果对进一步研究心肌细胞缺氧和复氧损伤有一定意义。  相似文献   
23.
The sensory cues for a less known form of frequency shifting behavior, gradual frequency falls, of electric organ discharges (EODs) in a pulse-type gymnotiform electric fish, Rhamphichthys rostratus, were identified. We found that the gradual frequency fall occurs independently of more commonly observed momentary phase shifting behavior, and is due to perturbation of sensory feedback of the fish's own EODs by EODs of neighboring fish. The following components were identified as essential features in the signal mixture of the fish's own and the neighbor's EOD pulses: (1) the neighbor's pulses must be placed within a few millisecond of the fish's own pulses, (2) the neighbor's pulses, presented singly at low frequencies (0.2–4 Hz), were sufficient, (3) the frequency of individual pulse presentation must be below 4 Hz, (4) amplitude modulation of the sensory feedback of the fish's own pulses induced by such insertions of the neighbor's pulses must contain a high frequency component: sinusoidal amplitude modulation of the fish's own EOD feedback at these low frequencies does not induce gradual frequency falls. Differential stimulation across body surfaces, which is required for the jamming avoidance response (JAR) of wave-type gymnotiform electric fish, was not necessary for this behavior. We propose a cascade of high-pass and low-pass frequency filters within the amplitude processing pathway in the central nervous system as the mechanism of the gradual frequency fall response.Abbreviations EOD electric organ discharge - f frequency of EOD or pacemaker command signal - JAR jamming avoidance response - S 1 stimulus mimicking fish's own EOD - f 1 frequency of S1 - S 2 stimulus mimicking neighbor's EOD - f 2 frequency of S2  相似文献   
24.
How might electric fish determine, from patterns of transdermal voltage changes, the size, shape, location, and impedance of a nearby object? I have investigated this question by measuring and simulating electric images of spheres and ellipsoids near an Apteronotus leptorhynchus. Previous studies have shown that this fish's electric field magnitude, and perturbations of the field due to objects, are complicated nonliner functions of distance from the fish. These functions become much simpler when distance is measured from the axes of symmetry of the fish and the object, instead of their respective edges. My analysis suggests the following characteristics of high frequency electric sense and electric images. 1. The shape of electric images on the fish's body is relatively independent of a spherical object's radius, conductivity, and rostrocaudal location. 2. An image's relative width increases linearly with lateral distance, and might therefore unambiguously encode object distance. 3. Only objects with very large dielectric constants cause appreciable phase shifts, and the degree of shift depends strongly on water conductivity. 4. Several parameters, such as the range of electric sense, may depend on the rostrocaudal location of an object. Large objects may be detectable further from the head than the tail, and conversely, small objects may be detectable further from the tail than head. 5. Asymmetrical objects produce different electric images, correlated with their cross-sections, for different orientations and phases of the electric field. 6. The steep attenuation with distance of the field magnitude causes spatial distortions in electric images, somewhat analogous to the perspective distortion inherent in wide angle optical lenses.  相似文献   
25.
This paper evaluates and criticises the developmental systems conception of evolution and develops instead an extension of the gene's eye conception of evolution. We argue (i) Dawkin's attempt to segregate developmental and evolutionary issues about genes is unsatisfactory. On plausible views of development it is arbitrary to single out genes as the units of selection. (ii) The genotype does not carry information about the phenotype in any way that distinguishes the role of the genes in development from that other factors. (iii) There is no simple and general causal criterion which distinguishes the role of genes in development and evolution. (iv) There is, however, an important sense in which genes but not every other developmental factor represent the phenotype. (v) The idea that genes represent features of the phenotype forces us to recognise that genes are not the only, or almost the only, replicators. Many mechanisms of replication are involved in both development and evolution. (vi) A conception of evolutionary history which recognises both genetic and non-genetic replicators, lineages of replicators and interactors has advantages over both the radical rejection of the replicator/interactor distinction and the conservative restriction of replication to genetic replication.  相似文献   
26.
Flux density and spectral measurements were carried out on magnetic fields generated by several types of motor-driven personal appliances used near the body. Among the units tested were several for which the average flux densities, as determined at the surfaces of the appliance, exceeded 0.4 mT. Time-rates-of-change (dB/dt) for several units exceeded 1000 T/s, and several units exhibited high-frequency components in the low-MHz range. Use of such appliances, although normally of short duration, can represent exposure to magnetic fields of relatively high flux density, which may also have high-frequency components. Compared to other household and commercial sources of magnetic fields, those generated by certain motor-driven personal appliances may represent a significant contribution to time-weighted average exposure and may represent an important source of local induced currents in the body. Furthermore, high-frequency transients that represent only a minor contribution to time-weighted average exposure may generate significant instantaneous induced currents. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   
    27.
    28.
    29.
    Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   
    30.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号