首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   59篇
  国内免费   18篇
  1058篇
  2023年   11篇
  2022年   11篇
  2021年   10篇
  2020年   27篇
  2019年   22篇
  2018年   29篇
  2017年   20篇
  2016年   27篇
  2015年   21篇
  2014年   49篇
  2013年   68篇
  2012年   22篇
  2011年   25篇
  2010年   28篇
  2009年   30篇
  2008年   38篇
  2007年   35篇
  2006年   26篇
  2005年   36篇
  2004年   18篇
  2003年   30篇
  2002年   27篇
  2001年   22篇
  2000年   18篇
  1999年   14篇
  1998年   28篇
  1997年   19篇
  1996年   21篇
  1995年   17篇
  1994年   17篇
  1993年   21篇
  1992年   23篇
  1991年   12篇
  1990年   14篇
  1989年   24篇
  1988年   23篇
  1987年   18篇
  1986年   27篇
  1985年   19篇
  1984年   17篇
  1983年   19篇
  1982年   27篇
  1981年   21篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   2篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有1058条查询结果,搜索用时 15 毫秒
51.
Summary We first present two simple dimeric models of cotransport that may account for all of the kinetics of Na++-d-glucose cotransport published so far in the small intestine. Both the sigmoidicity in the Na++ activation of transport (positive cooperativity) and the upward deviations from linearity in the Eadie-Hofstee plots relative to glucose concentrations (negative cooperativity) can be rationalized within the concept of allosteric kinetic mechanisms corresponding to either of two models involving sequential or mixed concerted and sequential conformational changes. Such models also allow for 2 Na++ 1 S and 1 Na++ 1 S stoichiometries of cotransport at low and high substrate concentrations, respectively, and for partial inhibition by inhibitors or substrate analogues. Moreover, it is shown that the dimeric models may present physiological advantages over the seemingly admitted hypothesis of two different cotransporters in that tissue. We next address the reevaluation of Na++-d-glucose cotransport kinetics in rabbit intestinal brush border membrane vesicles using stable membrane preparations, a dynamic approach with the Fast Sampling Rapid Filtration Apparatus (FSRFA), and both nonlinear regression and statistical analyses. Under different conditions of temperatures, Na++ concentrations, and membrane potentials clamped using two different techniques, we demonstrate that our data can be fully accounted for by the presence of only one carrier in rabbit jejunal brush border membranes since transport kinetics relative to glucose concentrations satisfy simple Michaelis-Menten kinetics. Although supporting a monomeric structure of the cotransporter, such a conclusion would conflict with previous kinetic data and more recent studies implying a polymeric structure of the carrier protein. We thus consider a number of alternatives trying to reconcile the observation of Michaelis-Menten kinetics with allosteric mechanisms of cotransport associated with both positive and negative cooperativities for Na++ and glucose binding, respectively. Such models, implying energy storage and release steps through conformational changes associated with ligand binding to an allosteric protein, provide a rational hypothesis to understand the long-time debated question of energy transduction from the Na++ electrochemical gradient to the transporter.This research was supported by grant MT-7607 from the Medical Research Council of Canada. One of the authors (A.B.) was supported by a scholarship from the Fonds de la Recherche en Santé du Québec and C. C. was supported by a fellowship from the GRTM. The technical assistance of Mrs. C. Leroy has been greatly appreciated. The authors also thank D.D. Maenz and C. Malo for insightful discussions and C. Gauthier for the art work.  相似文献   
52.
Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   
53.
Summary The effect of biliary salts and fatty acids on the bilayer structure of rabbit intestinal brush-border membranes was studied using the nonperturbing probe31P NMR. The broad. asymmetric lineshape of the31P NMR spectrum of isolated brush-border vesicles demostrates that their component phospholipids are organized in extended bilayers. These membranes are not significantly perturbed by incubation with physiological concentrations of biliary salts (3, 9, 18mm), demonstrating that the vesicles are highly stable, corresponding to their biological function. However, the emergence of a narrow peak superimposed on the broad lineshape indicates that a small proportion of the membrane phospholipids has reached isotropic motion, which may correspond to external or internal micellar structures. Incubation with mixed micelles of fatty acids and taurochlorate show that long-chain fatty acids enhance the membrane-perturbing effect of taurocholate while short-chain, watersoluble fatty acids do not, suggesting a difference in the absorption mechanisms.  相似文献   
54.
The electric fish, Eigenmannia, will smoothly shift the frequency of its electric organ discharge away from an interfering electric signal. This shift in frequency is called the jamming avoidance response (JAR). In this article, we analyze the behavioral development of the JAR and the anatomical development of structures critical for the performance of the JAR. The JAR first appears when juvenile Eigenmannia are approximately 1 month old, at a total length of 13–18 mm. We have found that the establishment of much of the sensory periphery and of central connections precedes the onset of the JAR. We describe three aspects of the behavioral development of the JAR: (a) the onset and development of the behavior is closely correlated with size, not age; (b) the magnitude (in Hz) of the JAR increases with size until the juveniles display values within the adult range (10–20 Hz) at a total length of 25–30 mm; and (3) the JAR does not require prior experience or exposure to electrical signals. Raised in total electrical isolation from the egg stage, animals tested at a total length of 25 mm performed a correct JAR when first exposed to the stimulus. We examine the development of anatomical areas important for the performance of the JAR: the peripheral electrosensory system (mechano- and electroreceptors and peripheral nerves); and central electrosensory pathways and nuclei [the electrosensory lateral line lobe (ELL), the lateral lemniscus, the torus semicircularis, and the pacemaker nucleus]. The first recognizable structures in the developing electrosensory system are the peripheral neurites of the anterior lateral line nerve. The afferent nerves are established by day 2, which is prior to the formation of receptors in the epidermis. Thus, the neurites wait for their targets. This sequence of events suggests that receptor formation may be induced by innervation of primordial cells within the epidermis. Mechanoreceptors are first formed between day 3 and 4, while electroreceptors are first formed on day 7. Electroreceptor multiplication is observed for the first time at an age of 25 days and correlates with the onset of the JAR. The somata of the anterior lateral line nerve ganglion project afferents out to peripheral electroreceptors and also send axons centrally into the ELL. The first electroreceptive axons invade the ELL by day 6, and presumably a rough somatotopic organization and segmentation within the ELL may arise as early as day 7. Axonal projections from the ELL to the torus develop after day 18. Within the torus semicircularis, giant cells are necessary for the performance of the JAR. Giant cell numbers increase exponentially during development and the onset of the JAR coincides with a minimum of at least 150 giant cells and the attainment of a total length of at least 15 mm and at least 150 giant cells. Pacemaker and relay cells comprise the adult Eigenmannia pacemaker nucleus. The growth and differentiation of these cell types also correlates with the onset of the JAR in developing animals. We describe a gradual improvement of sensory abilities, as opposed to an explosive onset of the mature JAR. We further suggest that this may be a rule common in most developing behavioral systems. © 1992 John Wiley & Sons, Inc.  相似文献   
55.
The effects of exposure to extremely low frequency electric fields (ELF EFs) on plasma lipid peroxide levels and antioxidant activity (AOA) in Sprague-Dawley rats were studied. The test was based on comparisons among rats treated with a combination of the oxidizing agent, 2,2'-azobis(2-aminopropane) dihydrochloride (AAPH) and 50 Hz EF of 17.5 kV/m intensity for 15 min per day for 7 days, AAPH alone, EF alone or no treatment. EF significantly decreased the plasma peroxide level in rats treated with AAPH, similar to treatment by ascorbic acid or the superoxide dismutase. Ascorbic acid increased AOA; however, EF and superoxide dismutase did not change AOA compared with sham exposure in stressed rats. No influence on the lipid peroxide level and AOA in unstressed rats was observed with EF exposure alone. Although the administration of AAPH decreased AOA, this decrease did not change when EF was added. These data indicate that the ELF EF used in this study influenced the lipid peroxide level in an oxidatively stressed rat.  相似文献   
56.
Structure changes of purple membranes during the photocycle were analysed in solution by measurements of the electric dichroism. The D96N-mutant was used to characterize the M-state at neutral pH. The transition from the resting state to 61% photo-stationary M-state is associated with a strong reduction of the dichroism decay time constant by a factor of approximately 2. Because the change of the time constant is independent of the bacteriorhodopsin concentration, the effect is not attributed to light-induced dissociation but to light-induced bending of purple membranes. After termination of light-activation the dichroism decay of the resting state is restored with a time constant close to that of the M-state decay, which is more than two orders of magnitude slower than proton transfer to the bulk. Thus, bending is not due to asymmetric protonation but to the structure of the M-state. A very similar reduction of decay time constants at a corresponding degree of light-activation was found for wild-type bacteriorhodopsin at pH-values 7.8-9.3, where the lifetime of the M-state is extended. Light-induced bending is also reflected in changes of the stationary dichroism, whereas the overall permanent dipole moment remains almost constant, suggesting compensation of changes in molecular and global contributions. Bead model simulations indicate that disks of approximately 1 microm diameter are bent at a degree of photo-activation of 61% to a radius of approximately 0.25 microm, assuming a cylindrical bending modus. The large light-induced bending effect is consistent with light-induced opening of the protein on the cytoplasmic side of the membrane detected by electron crystallography, which is amplified due to coupling of monomers in the membrane. Bending may function as a mechanical signal.  相似文献   
57.
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb''s law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.  相似文献   
58.
How might electric fish determine, from patterns of transdermal voltage changes, the size, shape, location, and impedance of a nearby object? I have investigated this question by measuring and simulating electric images of spheres and ellipsoids near an Apteronotus leptorhynchus. Previous studies have shown that this fish's electric field magnitude, and perturbations of the field due to objects, are complicated nonliner functions of distance from the fish. These functions become much simpler when distance is measured from the axes of symmetry of the fish and the object, instead of their respective edges. My analysis suggests the following characteristics of high frequency electric sense and electric images. 1. The shape of electric images on the fish's body is relatively independent of a spherical object's radius, conductivity, and rostrocaudal location. 2. An image's relative width increases linearly with lateral distance, and might therefore unambiguously encode object distance. 3. Only objects with very large dielectric constants cause appreciable phase shifts, and the degree of shift depends strongly on water conductivity. 4. Several parameters, such as the range of electric sense, may depend on the rostrocaudal location of an object. Large objects may be detectable further from the head than the tail, and conversely, small objects may be detectable further from the tail than head. 5. Asymmetrical objects produce different electric images, correlated with their cross-sections, for different orientations and phases of the electric field. 6. The steep attenuation with distance of the field magnitude causes spatial distortions in electric images, somewhat analogous to the perspective distortion inherent in wide angle optical lenses.  相似文献   
59.
Flux density and spectral measurements were carried out on magnetic fields generated by several types of motor-driven personal appliances used near the body. Among the units tested were several for which the average flux densities, as determined at the surfaces of the appliance, exceeded 0.4 mT. Time-rates-of-change (dB/dt) for several units exceeded 1000 T/s, and several units exhibited high-frequency components in the low-MHz range. Use of such appliances, although normally of short duration, can represent exposure to magnetic fields of relatively high flux density, which may also have high-frequency components. Compared to other household and commercial sources of magnetic fields, those generated by certain motor-driven personal appliances may represent a significant contribution to time-weighted average exposure and may represent an important source of local induced currents in the body. Furthermore, high-frequency transients that represent only a minor contribution to time-weighted average exposure may generate significant instantaneous induced currents. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   
    60.
    Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state 2H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific 2H labels have been introduced into the methyl groups of retinal and solid-state 2H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent 2H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the β-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the β4 strand of the E2 loop and the side chains of Glu122 and Trp265 within the binding pocket. The solid-state 2H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号