首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   80篇
  国内免费   39篇
  619篇
  2024年   1篇
  2023年   31篇
  2022年   36篇
  2021年   52篇
  2020年   45篇
  2019年   36篇
  2018年   40篇
  2017年   35篇
  2016年   30篇
  2015年   38篇
  2014年   45篇
  2013年   43篇
  2012年   22篇
  2011年   14篇
  2010年   18篇
  2009年   21篇
  2008年   6篇
  2007年   20篇
  2006年   11篇
  2005年   15篇
  2004年   10篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1974年   1篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
21.
泛素化是真核生物特有的蛋白质翻译后修饰,广泛地参与宿主细胞各种信号通路和生理过程.病原菌常通过分泌毒性效应蛋白,对泛素和泛素结合酶进行独特的共价修饰,或者利用泛素连接酶和去泛素化酶的酶学活性,调节宿主泛素化过程,从而干扰宿主细胞的信号转导,促进细菌的感染和生存.本文概述了病原菌效应蛋白调节宿主泛素化途径的主要研究进展和最新发现.  相似文献   
22.
There are many examples of positive and negative interactions between different species of bacteria inhabiting the same ecosystem. This observation provides the basis for a novel approach to preventing microbial diseases called replacement therapy. In this approach, a harmless effector strain is permanently implanted in the host's microflora. Once established, the presence of the effector strain prevents the colonization or outgrowth of a particular pathogen. In the case of dental caries, replacement therapy has involved construction of an effector strain called BCS3-L1, which was derived from a clinical Streptococcus mutans isolate. Recombinant DNA technology was used to delete the gene encoding lactate dehydrogenase in BCS3-L1 making it entirely deficient in lactic acid production. This effector strain was also designed to produce elevated amounts of a novel peptide antibiotic called mutacin 1140 that gives it a strong selective advantage over most other strains of S. mutans. In laboratory and rodent model studies, BCS3-L1 was found to be genetically stable and to produce no apparent deleterious side effects during prolonged colonization. BCS3-L1 was significantly less cariogenic than wild-type S. mutansin gnotobiotic rats, and it did not contribute at all to the cariogenic potential of the indigenous flora of conventional Sprague-Dawley rats. And, its strong colonization properties indicated that a single application of the BCS3-L1 effector strain to human subjects should result in its permanent implantation and displacement over time of indigenous, disease-causing S. mutans strains. Thus, BCS3-L1 replacement therapy for the prevention of dental caries is an example of biofilm engineering that offers the potential for a highly efficient, cost effective augmentation of conventional prevention strategies. It is hoped that the eventual success of replacement therapy for the prevention of dental caries will stimulate the use of this approach in the prevention of other bacterial diseases.  相似文献   
23.
《MABS-AUSTIN》2013,5(5):820-828
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (?30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.  相似文献   
24.
25.
Protease signalling in cell death: caspases versus cysteine cathepsins   总被引:3,自引:0,他引:3  
Turk B  Stoka V 《FEBS letters》2007,581(15):2761-2767
Proteases were, for a long time, mainly considered as protein degrading enzymes. However, in the last decade this view has changed dramatically, and the focus is now on proteases as signalling molecules. One of the best examples is apoptosis, the major mechanism used by eukaryotes to remove superfluous, damaged and potentially dangerous cells, in which a number of proteases have been found to play a central role. Of these the caspases have been considered to be the major players. However, more recently, other proteases have been increasingly suggested as being important in apoptosis, in particular the cysteine cathepsins. In this review the roles of caspases and cysteine cathepsins in apoptosis signalling are compared and discussed.  相似文献   
26.
27.
28.
29.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   
30.
Although aphids are worldwide crop pests, little is known about aphid effector genes underlying virulence and avirulence. Here we show that controlling the genetics of both aphid and host can reveal novel recombinant genotypes with previously undetected allelic variation in both virulence and avirulence functions. Clonal F1 progeny populations were derived from reciprocal crosses and self-matings between two parental genotypes of pea aphid (Acyrthosiphon pisum) differing in virulence on a Medicago truncatula host carrying the RAP1 and RAP2 resistance genes. These populations showed Mendelian segregation consistent with aphid performance being controlled largely by a dominant virulence allele derived from only one parent. Altered segregation ratios on near-isogenic host genotypes differing in the region carrying RAP1 were indicative of additional heritable functions likely related to avirulence genes originating from both parents. Unexpectedly, some virulent F1 progeny were recovered from selfing of an avirulent parent, suggesting a reservoir of cryptic alleles. Host chlorosis was associated with virulence, whereas necrotic hypersensitive-like response was not. No maternal inheritance was found for any of these characteristics, ruling out sex-linked, cytoplasmic, and endosymbiotic factors. Our results demonstrate the tractability of dissecting the genetic basis of pest-host resistance mechanisms and indicate that the annual sexual cycle in aphids may lead to frequent novel genotypes with both increased and decreased virulence. Availability of genomes for both pest and host can facilitate definition of cognate gene-for-gene relationships, potentially leading to selection of crop genotypes with multiple resistance traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号