首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3485篇
  免费   285篇
  国内免费   299篇
  4069篇
  2023年   50篇
  2022年   43篇
  2021年   104篇
  2020年   96篇
  2019年   113篇
  2018年   104篇
  2017年   109篇
  2016年   137篇
  2015年   107篇
  2014年   222篇
  2013年   275篇
  2012年   196篇
  2011年   151篇
  2010年   144篇
  2009年   194篇
  2008年   174篇
  2007年   181篇
  2006年   160篇
  2005年   150篇
  2004年   123篇
  2003年   123篇
  2002年   100篇
  2001年   87篇
  2000年   80篇
  1999年   80篇
  1998年   61篇
  1997年   62篇
  1996年   46篇
  1995年   68篇
  1994年   49篇
  1993年   42篇
  1992年   42篇
  1991年   33篇
  1990年   32篇
  1989年   31篇
  1988年   36篇
  1987年   31篇
  1986年   29篇
  1985年   30篇
  1984年   34篇
  1983年   17篇
  1982年   14篇
  1981年   22篇
  1980年   17篇
  1979年   17篇
  1978年   10篇
  1977年   10篇
  1975年   6篇
  1974年   8篇
  1973年   6篇
排序方式: 共有4069条查询结果,搜索用时 0 毫秒
41.
The concept of variance effective population size [Ne(v)] and other expressions are reviewed and described for specific sampling steps in germplasm collection and regeneration of monoecious species. Special attention is given to procedures for computing the variance of the number of contributed gametes [V(k)] to the next generation. Drift, as it occurs between generations, was considered to contain a component due to the sampling of parents and a subsequent component due to the sampling of gametes. This demonstrates that drift, caused by reduction of seed viability, damages the genetic integrity of accessions stored in germplasm banks. The study shows how mating designs, such as plant-to-plant or chain crossings with additional female gametic control, can partially alleviate this problem. Optimal procedures for increasing Ne(v) when collecting germplasm in the field are also discussed. The effect of different female and male gametic control strategies on Ne(v) is considered under several situations. Practical examples illustrating the use of V(k) and Ne(v) expressions are given.  相似文献   
42.
43.
稻瘿蚊为害(标葱)的空间分布型及其与有效穗关系的研究   总被引:2,自引:0,他引:2  
李自军 《昆虫知识》1994,31(3):135-137
稻瘿蚊为害的空间分布型属聚集分布,田间估计稻瘿蚊为害的最佳取样方法为棋盘法和平行线法,当每丛受害超过1苗时,抽样数量可稳定在151丛以下。标葱率和有效穗相关性测定表明:当标葱率在20%以下时,为害程度与有效穗的多少无显著相关;当标葱率大于20%时,标葱率与有效穗呈显著负相关,每受害加重5%,有效穗将减少0.37个/丛。  相似文献   
44.
湘北烟区烟青虫发生情况研究   总被引:2,自引:0,他引:2  
刘见平  汪明达 《昆虫知识》1994,31(3):153-155
烟青虫在湘北烟区1年发生5代,第一至四代危害烟草,第五代在其他作物上取食。自然条件下,世代重叠比较明显,幼虫发生与危害最大的是第一代,危害时期是5月下旬至6月下旬,同时,还得出了烟青虫各代的发生期、历期及其发育起点温度和有效积温。  相似文献   
45.
农田林网化地区近地面层廓线特征研究   总被引:2,自引:0,他引:2  
大面积林网化地区近地面层大气的系留气球观测发现,近地面层大气的风、温、湿分为两层,即下边界层和扰动边界层,其厚度和廓线分布与理查逊数有关,在中性天气条件下均满足对数分布规律,边界层(特别是扰动边界层)内的摩擦速度U."与旷野对比点的摩擦速度U0增大1个数量级,而粗糙度Z"0增大2个数量级,甚至更大。  相似文献   
46.
Unequal breeding sex ratio can significantly reduce effective population size, allowing a rare neutral allele to jump to a high frequency through genetic drift. However, this one-way alteration to allele frequency appears inconsistent with the concept that drift is non-directional. Based on binomial sampling distribution, this study developed a method to directly and exhaustively measure drift by calculating the mean deviation of change in allele frequency, then applied it to cases of unequal breeding sex ratio. The result shows that, under those cases, (1) the mean deviation can always be divided into two halves that are equal in size but opposite in direction; (2) each half consists of one or several categories represented by various allele proportions in the rare sex; (3) this proportion is another factor that determines the outcome of drift, in addition to effective population size and allele frequency; (4) drift is non-directional on a global scale, but whether an allele will drift up or down can be predicted based on the above factors. This method enables us to dissect every component of the expected change in allele frequency caused by drift and to find out the combined effect of population size, allele frequency and allele proportion in the rarer sex under neutrality but unequal breeding sex ratio.  相似文献   
47.
Although it is known that three-dimensional structure is well conserved during the evolutionary development of proteins, there have been few studies that consider other parameters apart from divergence of the main-chain coordinates. In this study, we align the structures of 90 pairs of homologous proteins having sequence identities ranging from 5 to 100%. Their structures are compared as a function of sequence identity, including not only consideration of C alpha coordinates but also accessibility, Ooi numbers, secondary structure, and side-chain angles. We discuss how these properties change as the sequences become less similar. This will be of practical use in homology modeling, especially for modeling very distantly related or analogous proteins. We also consider how the average size and number of insertions and deletions vary as sequences diverge. This study presents further quantitative evidence that structure is remarkably well conserved in detail, as well as at the topological level, even when the sequences do not show similarity that is significant statistically.  相似文献   
48.
Cancer cell lines play a crucial role as invaluable models in cancer research, facilitating the examination of cancer progression as well as the advancement of diagnostics and treatments. While they may not perfectly replicate the original tumor, they generally exhibit similar characteristics. Low-passage cancer cell lines are generally preferred due to their closer resemblance to the original tumor, as long-term culturing can alter the genetic and molecular profiles of a cell line thereby highlighting the importance of monitoring the passage number (PN). Variations in proliferation, migration, gene expression, and drug sensitivity can be linked to PN differences. PN can also influence DNA methylation levels, metabolic profiles, and the expression of genes/or proteins in cancer cell lines. When conducting research on cancer cell lines, it is crucial for researchers to carefully select the appropriate PN to maintain consistency and reliability of results. Moreover, to ensure dependability and replicability, scientists ought to actively track the growth, migration, and gene/or protein profiles of cancer cell lines at specific PNs. This approach enables the identification of the most suitable range of PNs for experiments, guaranteeing consistent and precise results. Additionally, such efforts serve to minimize disparities and uphold the integrity of research. In this review, we have laid out recommendations for laboratories to overcome these PN discrepancies when working with cancer cell lines.  相似文献   
49.
Karyomorphological comparisons were made of 16 native and cultivated species ofSelaginella in Japan. The somatic chromosome numbers are 2n=16 inS. boninensis; 2n=18 inS. doederleinii, S. helvetica, S. limbata, S. lutchuensis, S. nipponica, S. selaginoides, S. tama-montana, andS. uncinata; 2n=20 inS. biformis, S. involvens, S. moellendorffii, S. remotifolia, andS. tamariscina; 2n=30 inS. rossii; and 2n=32 inS. heterostachys. The interphase nuclei of all species examined are uniformly assigned to the simple chromocenter type. The metaphase karyotype of 2n=16 (x=8) is 8 m (=median centromeric chromosomes)+8(st+t)(=subterminal and terminal). The group of the species having 2n=18 (x=9) is heterogeneous karyomorphologically: The karyotype ofS. nipponica is 2n=18=6 m+12(st+t),S. tama-montana 10 m+2 sm(=submedian)+6(st+t), andS. uncinata 6 m+7 sm+5(st+t). Although the remaining five species have the common karyotype 8 m+4 sm+6(st+t), the values of mean chromosome length are variable. Another group of the specles having 2n=20 (x=10) is homogeneous, since all species have the same karyotypes 8 m+4 sm+8(st+t) and have similar chromosome size. The karyotype of 2n=30 is 12 m+6 sm+12(st+t) and is suggested to be a triploid of x=10, and 2n=32=16m+16(st+t), a tetraploid of x=8. Thus, three kinds of basic chromosome numbers, x=8, 9, 10 are present in JapaneseSelaginella examined, and their karyomorphological relationships are discussed.  相似文献   
50.
1 引言 传统的植物光合生理生态研究中,多用照度计来测定光照指标,它以人眼对光亮度的响应特性为基础,与植物叶片对光照的响应曲线差异很大;而太阳光谱中只有400—700nm的波段才是光合有效辐射  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号