首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19610篇
  免费   607篇
  国内免费   329篇
  20546篇
  2024年   154篇
  2023年   329篇
  2022年   454篇
  2021年   540篇
  2020年   599篇
  2019年   770篇
  2018年   596篇
  2017年   398篇
  2016年   400篇
  2015年   478篇
  2014年   1015篇
  2013年   1327篇
  2012年   753篇
  2011年   1063篇
  2010年   727篇
  2009年   841篇
  2008年   896篇
  2007年   922篇
  2006年   783篇
  2005年   692篇
  2004年   616篇
  2003年   499篇
  2002年   404篇
  2001年   301篇
  2000年   227篇
  1999年   253篇
  1998年   258篇
  1997年   206篇
  1996年   225篇
  1995年   178篇
  1994年   170篇
  1993年   147篇
  1992年   155篇
  1991年   131篇
  1990年   120篇
  1988年   114篇
  1987年   118篇
  1986年   111篇
  1985年   195篇
  1984年   284篇
  1983年   231篇
  1982年   256篇
  1981年   208篇
  1980年   224篇
  1979年   219篇
  1978年   180篇
  1977年   140篇
  1976年   123篇
  1975年   112篇
  1974年   112篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
92.
The effect of 2′-fluoro-2′-deoxycytidine (dCfl) on the growth of certain viruses of the herpes type was investigated. It is shown that the compound has considerable anti-viral activity against HSV-I, HSV-II, pseudorabies virus and equine abortion virus. It has an effect comparable to that of araC and is more efficient than br5dC, but less so than acyclovir. Experiments with thymidine kinase-negative strains of HSV-I indicated that dCfl was phosphorylated by the viral kinase, and its Km appears to be low and close to that of thymidine. Density gradient centrifugation enabled us to show that dCfl was incorporated into cellular and viral DNA and RNA. The cytotoxic activity of dCfl appears to be about 10-times smaller than that of araC. Removal of the nucleoside analog, washing and replacement with deoxycytidine reversed this effect, indicating rather a cytostatic than cytotoxic effect.  相似文献   
93.
    
Regulators of G-protein signaling (RGS) 9-2 is a striatal enriched protein that controls G protein coupled receptor signaling duration by accelerating Galpha subunit guanosine triphosphate hydrolysis. We have previously demonstrated that mice lacking the RGS9 gene show enhanced morphine analgesia and delayed development of tolerance. Here we extend these studies to understand the mechanism via which RGS9-2 modulates opiate actions. Our data suggest that RGS9-2 prevents several events triggered by mu-opioid receptor (MOR) activation. In transiently transfected PC12 cells, RGS9-2 delays agonist induced internalization of epitope HA-tagged mu-opioid receptor. This action of RGS9-2 requires localization of the protein near the cell membrane. Co-immunoprecipitation studies reveal that RGS9-2 interacts with HA-tagged mu-opioid receptor, and that this interaction is enhanced by morphine treatment. In addition, morphine promotes the association of RGS9-2 with another essential component of MOR desensitization, beta-arrestin-2. We also show that over-expression of RGS9-2 prevents opiate-induced extracellular signal-regulated kinase phosphorylation. Our data indicate that RGS9-2 plays an essential role in opiate actions, by negatively modulating MOR downstream signaling as well as the rate of MOR endocytosis.  相似文献   
94.
Antimutagenic effects of cinnamaldehyde on mutagenesis by chemical agents were investigated in Escherichia coli WP2 uvrA- trpE-. Cinnamaldehyde, when added to agar medium, greatly reduced the number of Trp+ revertants induced by 4-nitroquinoline 1-oxide (4-NQO) without any decrease of cell viability. This antimutagenic effect could not be explained by inactivation of 4-NQO caused by direct interaction with cinnamaldehyde. Mutagenesis by furylfuramide (AF-2) was also suppressed significantly. Mutations induced by methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) were slightly inhibited. However, cinnamaldehyde was not at all effective on the mutagenesis of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Two derivatives of cinnamaldehyde, cinnamyl alcohol and trans-cinnamic acid, did not have as strong antimutagenic effects on 4-NQO mutagenesis as cinnamaldehyde had. Because cinnamaldehyde showed marked antimutagenic effects against mutations induced by UV-mimic mutagens but not those induced by MNNG or EMS, it seems that cinnamaldehyde might act by interfering with an inducible error-prone DNA repair pathway.  相似文献   
95.
96.
    
The transient receptor potential canonical channel 5 (TRPC5) is a Ca2+-permeable ion channel, which is predominantly expressed in the brain. TRPC5-deficient mice exhibit a reduced innate fear response and impaired motor control. In addition, outgrowth of hippocampal and cerebellar neurons is retarded by TRPC5. However, pharmacological evidence of TRPC5 function on cellular or organismic levels is sparse. Thus, there is still a need for identifying novel and efficient TRPC5 channel modulators.We, therefore, screened compound libraries and identified the glucocorticoid methylprednisolone and N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1,1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)propanamide (BTD) as novel TRPC5 activators. Comparisons with closely related chemical structures from the same libraries indicate important substructures for compound efficacy. Methylprednisolone activates TRPC5 heterologously expressed in HEK293 cells with an EC50 of 12 μM, while BTD-induced half-maximal activation is achieved with 5-fold lower concentrations, both in Ca2+ assays (EC50 = 1.4 μM) and in electrophysiological whole cell patch clamp recordings (EC50 = 1.3 μM). The activation resulting from both compounds is long lasting, reversible and sensitive to clemizole, a recently established TRPC5 inhibitor. No influence of BTD on homotetrameric members of the remaining TRPC family was observed. On the main sensory TRP channels (TRPA1, TRPV1, TRPM3, TRPM8) BTD exerts only minor activity. Furthermore, BTD can activate heteromeric channel complexes consisting of TRPC5 and its closest relatives TRPC1 or TRPC4, suggesting a high selectivity of BTD for channel complexes bearing at least one TRPC5 subunit.  相似文献   
97.
Bacterial proteins belonging to the MocR/GabR family are chimeric proteins incorporating a short N-terminal helix-turn-helix containing domain with DNA-binding properties, and a long C-terminal domain belonging to the superfamily of the pyridoxal-5′-phosphate enzymes of fold type I. The first purpose of this report is to give an overview of the distribution of these factors among the different taxonomical bacterial divisions and to determine the degree of conservation of the main structural features of the PLP binding domain. Complete proteomes of bacteria phyla were scanned with a hidden Markov model representative of the MocR family. Results indicate that presence of MocR factors is heterogeneous even within the single bacterial phylum: some species miss completely the factors, while others possess one or even more regulators. Absence of MocR factors is distinctive of some phyla such as Chlamydiae. The genomic distribution of MocR is, as expected, highly correlated to the size of the genome. At variance, phyla missing MocR regulators generally are characterized by compact genomes, of the order of 1.0–2.0 Mb, such as the case of Mollicutes or Chlamydiae. Apparently, the minimum genome size compatible with the presence of MocR genes is around 2.0–2.5 Mb. Conservation of the residues corresponding to those involved in the interaction with the cofactor pyridoxal-5′-phosphate in the homologous 2-aminoadipate aminotransferase, was analyzed in the multiple sequence alignments of MocR within each phyla considered. In the vast majority of cases, residues are conserved or conservatively replaced. This result suggests that, in most cases, MocR factors preserve at least ability to bind the cofactor and very likely some catalytic abilities.  相似文献   
98.
《Luminescence》2003,18(3):173-181
The goal of this study was to identify the most important variables affecting bioluminescent ATP, ADP and AMP measurements in plasma and to develop an assay that takes these variables into account. Blood samples were drawn from conscious dogs. A ‘stop solution’ containing EDTA was prepared, which greatly retarded plasma ATP degradation by chelating Mg+2 and Ca+2 that are co‐factors for many ATPases. Stop solution and blood were mixed using a two‐syringe withdrawal system. Samples were centrifuged twice in order to remove red blood cells, and ATP was measured in the supernatant using the firefly luciferase assay. Sample pH was adjusted to the optimal range (7.75–7.95) and Mg2+ (necessary for the luciferase reaction) was added back to the sample within the luminometer 2 s prior to luciferase addition. Four assay tubes were prepared for each plasma sample, containing standard additions of 0–15 pmol added ATP, in order to quantify native plasma ATP content. In separate plasma/stop solution samples ADP + ATP was measured after converting ADP to ATP via the pyruvate kinase reaction, and AMP + ADP + ATP was measured after addition of both myokinase and pyruvate kinase. Addition of forskolin and isobutylmethylxanthine (IBMX) to the stop solution to inhibit platelets resulted in lower ATP concentrations. Measurement of ATP and haemoglobin from lysed erythrocytes revealed that haemolysis exerts a strong influence on plasma ATP concentration that must be taken into account. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
99.
100.
    
BACKGROUND: We aimed to evaluate the efficacy of gene-directed enzyme-prodrug therapy (GDEPT) using cytosine deaminase in combination with uracil phosphoribosyl transferase (CDUPRT) against intraprostatic mouse androgen-refractory prostate (RM1) tumors in immunocompetent mice. The product of the fusion gene, CDUPRT, converts the prodrug, 5-fluorocytosine (5FC), into 5-fluorouracil (5FU) and other cytotoxic metabolites that kill both CDUPRT-expressing and surrounding cells, via a 'bystander effect'. METHODS: Stably transformed andogen-independent mouse prostate cancer (PC) cells, RM1-CDUPRT, -GFP or GFP/LacZ cells were used. To assess the local bystander effects of CDUPRT-GDEPT, immunocompetent C57BL/6 mice implanted with cell mixtures of RM1-GFP/CDUPRT and RM1-GFP cells in different proportions intraprostatically were treated with 5FC. Pseudo-metastases in the lungs were established by a tail vein injection of untransfected RM1 cells. At necropsy, prostate weight/volume and lung colony counts were assessed. Tumors, lymph nodes, spleens and lungs were frozen or fixed for immunohistochemistry. RESULTS: CDUPRT expression in RM1-GFP/CDUPRT cells or tumors was confirmed by enzymic conversion of 5FC into 5FU, using HPLC. Treatment of mice bearing intraprostatic RM1-GFP/CDUPRT tumors with 5FC resulted in complete regression of the tumors. A 'local bystander effect' was seen, even though only 20% of the cells expressed CDUPRT. More importantly a significant reduction in pseudo-metastases of RM1 cells in lungs indicated a 'distant bystander effect'. Immunohistochemical evaluation of the treated tumors showed increased necrosis and apoptosis, with decreased tumor vascularity. There was also a significant increase in tumour-infiltration by macrophages, CD4+ T and natural killer cells. CONCLUSIONS: We conclude that CDUPRT-GDEPT significantly suppressed the aggressive growth of RM1 prostate tumors and lung pseudo-metastases via immune mechanisms involving necrosis and apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号