首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4896篇
  免费   818篇
  国内免费   2352篇
  2024年   66篇
  2023年   323篇
  2022年   286篇
  2021年   420篇
  2020年   403篇
  2019年   484篇
  2018年   346篇
  2017年   348篇
  2016年   392篇
  2015年   332篇
  2014年   356篇
  2013年   392篇
  2012年   332篇
  2011年   308篇
  2010年   264篇
  2009年   319篇
  2008年   279篇
  2007年   360篇
  2006年   301篇
  2005年   266篇
  2004年   212篇
  2003年   182篇
  2002年   167篇
  2001年   153篇
  2000年   116篇
  1999年   88篇
  1998年   100篇
  1997年   51篇
  1996年   75篇
  1995年   47篇
  1994年   36篇
  1993年   33篇
  1992年   49篇
  1991年   29篇
  1990年   30篇
  1989年   18篇
  1988年   8篇
  1987年   18篇
  1986年   5篇
  1985年   13篇
  1984年   6篇
  1983年   7篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   4篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1958年   8篇
排序方式: 共有8066条查询结果,搜索用时 609 毫秒
31.
Abstract: Baboons are widely used in biomedical research. Although it is widely held that Papio hamadryas breed well in captivity, each established colony has a different reproductive success often hypothesised to be due to husbandry practices. The National Baboon Colony in Australia is a unique colony that houses Papio hamadryas to mimic that structure seen in the wild. In this article; we have analysed their reproductive parameters and neonatal outcomes. The success of the colony husbandry practices was demonstrated by lack of maternal mortality, low foetal morbidity, and known maternal and paternal linage.  相似文献   
32.
Abstract. To test if low soil fertility and competition limit the performance of Mediterranean shrubs, and if the effects of competition on plant performance were modified by soil fertility, we subjected shrubs of Erica multiflora to a factorial field experiment of fertilization and removal of neighbours around target plants. After 18 months of treatment, fertilization had stimulated the growth of pre-existent sprouts and biomass allocation to stems into new sprouts, but decreased the frequency of sprout flowering. Removal of neighbours increased the number and biomass of new sprouts, the probability of sprout flowering and the biomass of flowers. Fertilization slightly enhanced sprout recruitment and the probability of sprout flowering when neighbours were removed, but did not modify the other parameters of plant performance. According to our results, both low soil fertility and competition limited plant performance. Competition was slightly more intense in fertilized plants, but only in determining sprout and flowering bud stimulation.  相似文献   
33.
Ernst Mayr's contributions to 20th century biology extend far beyond his defense of certain elements in evolutionary theory. At the center of mid-century efforts in American evolutionary studies to build large research communities, Mayr spearheaded campaigns to create a Society for the Study of Evolution and a dedicated journal,Evolution, in 1946. Begun to offset the prominence ofDrosophila biology and evolutionary genetics, these campaigns changed course repeatedly, as impediments appeared, tactics shifted, and compromises built a growing coalition of support. Preserved, however, were designs to balance the community and journal with careful equation of status and explicit partitioning of responsibilities within the working coalition. Choice terms such as cooperation and unity carried a strong political message. Mayr's editorship ofEvolution provides a superb example of these balancing efforts. The mid-century infrastructural activities described herein also represented aggressive attempts to leverage control across several layers of community. Leaders of these campaigns sought: (1) to promote evolutionary studies as a modernized research discipline and place it at the center of American biology, (2) to promote evolutionary studies within existing disciplines — e.g. systematics, genetics, and paleontology, (3) to foster certain research styles within evolutionary studies, and (4) to emphasize certain solutions to prominent research questions. Throughout, Mayr interjected his priorities, tactics and energy.  相似文献   
34.
藻-菌生态系统代谢功能的生态学研究   总被引:4,自引:0,他引:4  
在室内模拟条件下,研究了一些生态因子对藻-菌(A+B)生态系统代谢有机碳(C6H12O6)、NH3-N和无机磷(IP)的影响.研究结果表明,当藻-菌生态系统中藻(A)或菌(B)的起始数量一定时,其代谢C6H12O6的速率,随与之组合的B或A的起始数量增加(数量比则相应降低)而增加.在光照和黑暗条件下,A+B系统代谢上述3种营养物质的速率均有一定的差异.黑暗下C6H12O6的平均代谢速率较光照下高12.3%(P<0.05),IP和NH3-N的平均代谢速率则分别较光照下低14.4%(P<0.05)和16.2%(P<0.001).在A+B系统和A、B单培养物中,3种营养物质的代谢速率均随有机负荷量增加而增加,而且A+B系统的代谢速率分别高于单培养的A和B,其中NH3-N代谢尤为显著.文章还就生态系统结构与功能的关系问题进行了讨论.  相似文献   
35.
36.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
37.
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.  相似文献   
38.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
39.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
40.
Ecosystem management in the face of global change requires understanding how co-occurring threats affect species and communities. Such an understanding allows for effective management strategies to be identified and implemented. An important component of this is differentiating between factors that are within (e.g. invasive predators) or outside (e.g. drought, large wildfires) of a local manager's control. In the global biodiversity hotspot of south-western Australia, small- and medium-sized mammal species are severely affected by anthropogenic threats and environmental disturbances, including invasive predators, fire, and declining rainfall. However, the relative importance of different drivers has not been quantified. We used data from a long-term monitoring program to fit Bayesian state-space models that estimated spatial and temporal changes in the relative abundance of four threatened mammal species: the woylie (Bettongia penicillata), chuditch (Dasyurus geoffroii), koomal (Trichosurus vulpecula) and quenda (Isoodon fusciventor). We then use Bayesian structural equation modelling to identify the direct and indirect drivers of population changes, and scenario analysis to forecast population responses to future environmental change. We found that habitat loss or conversion and reduced primary productivity (caused by rainfall declines) had greater effects on species' spatial and temporal population change than the range of fire and invasive predator (the red fox Vulpes vulpes) management actions observed in the study area. Scenario analysis revealed that a greater extent of severe fire and further rainfall declines predicted under climate change, operating in concert are likely to further reduce the abundance of these species, but may be mitigated partially by invasive predator control. Considering both historical and future drivers of population change is necessary to identify the factors that risk species recovery. Given that both anthropogenic pressures and environmental disturbances can undermine conservation efforts, managers must consider how the relative benefit of conservation actions will be shaped by ongoing global change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号