首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6479篇
  免费   983篇
  国内免费   2842篇
  2024年   66篇
  2023年   304篇
  2022年   315篇
  2021年   447篇
  2020年   465篇
  2019年   503篇
  2018年   405篇
  2017年   392篇
  2016年   431篇
  2015年   378篇
  2014年   395篇
  2013年   428篇
  2012年   323篇
  2011年   360篇
  2010年   300篇
  2009年   387篇
  2008年   331篇
  2007年   433篇
  2006年   366篇
  2005年   373篇
  2004年   289篇
  2003年   278篇
  2002年   280篇
  2001年   248篇
  2000年   176篇
  1999年   172篇
  1998年   151篇
  1997年   128篇
  1996年   136篇
  1995年   119篇
  1994年   100篇
  1993年   109篇
  1992年   118篇
  1991年   78篇
  1990年   86篇
  1989年   67篇
  1988年   57篇
  1987年   37篇
  1986年   31篇
  1985年   43篇
  1984年   33篇
  1983年   16篇
  1982年   35篇
  1981年   35篇
  1980年   19篇
  1979年   14篇
  1978年   7篇
  1977年   11篇
  1976年   9篇
  1958年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Hydroponic experiments were conducted in a growth chamber and changes in the hydraulic conductivity of sorghum (Sorghum vulgare Pers.) roots (Lpr) at the three-leaf stage were measured using the pressure chamber method. Water deficiency was imposed with polyethylene glycol (PEG) 6000 and the phosphorus (P) levels were controlled by complete Hoagland solution with and without P nutrient. The objective of this study was to investigate the effect of P nutrition on root Lpr under water deficiency. The results showed that the Lpr in P deficiency treatments decreased markedly, but the Lpr recovered to the same value as that of control when sufficient P was supplied for 4-24 h. Water deficiency decreased Lpr, but the hydraulic conductivity of the roots with sufficient P supply was still higher than that of plants without P supply. When resuming water supply, the Lpr of the water-deficient plants under P supply recovered faster than that of plants without P supply, which indicates that plants with sufficient P nutrient are more drought tolerant and have a greater ability to recover after drought. The treatment of HgCl2 indicated that P nutrient could regulate the Lpr by affecting the activity and the expression levels of aquaporins.  相似文献   
962.
The global human population is growing exponentially, close to a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People desire the economic advantages provided by coastal development along with the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in nearshore project design and impact mitigation has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology, and adaptive management to incorporate science into decisions about uses of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize tidally influenced shorelines and habitats (i.e., riparian forests, marshes, unvegetated flats, rocky shores, seagrass meadows, kelp forests) for preservation, conservation, and restoration. Case studies of Clinton, Washington, and Port Townsend, Washington, demonstrate the incorporation of an ecological perspective and technological solutions into design of overwater structures to minimize impacts on nearshore ecosystems. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think these kinds of methods can contribute to the net improvement of already degraded ecosystems. The ingredients include applied science to understand the issues, education, incentives, empirical data, cumulative impact analysis, and an effective adaptive management program. Because the option of net ecosystem improvement is often more costly than alternatives such as no net loss, commitment by the local or regional community to this approach is essential.  相似文献   
963.
The planet is growing warmer because of a massive disruption in global biogeochemical cycles. We are burning our reserves of fossil fuels, which formed over a period of 300 million years, in the blink of an eye in geologic time. One manifestation of our addiction to fossil fuels is a dramatic change in the composition of the atmosphere and its radiative properties. Evidence is discussed in this commentary that human-induced global warming has already occurred, that powerful inertia is in place to cause future warming, and that humans and ecosystems are currently being affected. Stabilizing the atmospheric concentration of carbon dioxide at 550 ppm within the next century will require a 70% cutback in emissions. Thus, a whole new system of powering our global economy is necessary.  相似文献   
964.
Abstract. Question: How do Coriaria arborea, an N‐fixing native shrub, and Buddleja davidii, a non‐N‐fixing exotic shrub, affect N:P stoichiometry in plants and soils during early stages of primary succession on a flood‐plain? Location: Kowhai River Valley, northeast South Island, New Zealand. Methods: We measured soil and foliar nutrient concentrations, light levels, plant community composition and the above‐ground biomass of Coriaria and Buddleja in four successional stages: open, young, vigorous and mature. Results: Coriaria occurred at low density but dominated above‐ground biomass by the vigorous stage. Buddleja occurred at 5.3 ± 1.0 stems/m2 in the young stage and reached a maximum biomass of 520–535 g.m‐2 during the young and vigorous stages. Mineral soil N increased with above‐ground Coriaria biomass (r2= 0.45), but did not vary with Buddleja biomass. In contrast, soil P increased with Buddleja biomass (r2= 0.35), but not with Coriaria biomass. In early successional stages, 70–80% of the species present were exotic, but this declined to about 15% by the mature stage. Exotic plant species richness declined with increasing Coriaria biomass, but no other measures of diversity varied with either Coriaria or Buddleja biomass. Conclusion: These results demonstrate that Buddleja dominates early succession and accumulates P whereas Coriaria dominates later succession and accumulates N. A key ecosystem effect of the invasive exotic Buddleja is alteration of soil N:P stoichiometry.  相似文献   
965.
The majority of deforested land in the Amazon Basin has become cattle pasture, making forest‐to‐pasture conversion an important contributor to the carbon (C) and climate dynamics of the region. However, our understanding of biogeochemical dynamics in pasturelands remains poor, especially when attempting to scale up predictions of C cycle changes. A wide range of pasture ages, soil types, management strategies, and climates make remote sensing the only realistic means to regionalize our understanding of pasture biogeochemistry and C cycling over such an enormous geographic area. However, the use of remote sensing has been impeded by a lack of effective links between variables that can be observed from satellites (e.g. live and senescent biomass) and variables that cannot be observed, but which may drive key changes in C storage and trace gas fluxes (e.g. soil nutrient status). We studied patterns in canopy biophysical–biochemical properties and soil biogeochemical processes along pasture age gradients on two important soil types in the central Amazon. Our goals were to (1) improve our understanding of the plot‐scale biogeochemical dynamics of this land‐use change, (2) evaluate the effects of pasture development on two contrasting soil types (clayey Oxisols and sandy Entisols), and (3) attempt to use remotely sensed variables to scale up the site‐specific variability in biogeochemical conditions of pasturelands. The biogeochemical analyses showed that (1) aboveground and soil C stocks decreased with pasture age on both clayey and sandy soils, (2) declines in plant biomass were well correlated with declines in soil C and with available phosphorus (P) and calcium (Ca), and (3) despite low initial values for total and available soil P, ecosystem P stocks declined further with pasture age, as did a number of other nutrients. Spectral mixture analysis of Landsat imagery provided estimates of photosynthetic vegetation (PV) and non‐photosynthetic vegetation (NPV) that were highly correlated with field measurements of these variables and plant biomass. In turn, the remotely sensed sum PV+NPV was well correlated with the changes in soil organic carbon and nitrogen, and available P and Ca. These results suggest that remote sensing can be an excellent indicator of not only pasture area, but of pasture condition and C storage, thereby greatly improving regional estimates of the environmental consequences of such land‐use change.  相似文献   
966.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   
967.
Recent efforts to clear invasive plants from the fynbos of South Africa forces managers to think about how N2‐fixing invasives have altered ecosystem processes and the implications of these changes for community development. This study investigated the changes in nitrogen (N) cycling regimes in fynbos with the invasion of Acacia saligna, the effects of clear‐cutting acacia stands on soil microclimate and N cycling, and how altered N resources affected the growth of a weedy grass species. Litterfall, litter quality, soil nutrient pools, and ion exchange resin (IER)‐available soil N were measured in uninvaded fynbos, intact acacia, and cleared acacia stands. In addition, a bioassay experiment was used to ascertain whether the changes in soil nutrient availability associated with acacia would enhance the success of a weedy grass species. Acacia plots had greater amounts of litterfall, which had higher concentrations of N. This led to larger quantities of organic matter, total N, and IER‐available N in the soil. Clearing acacia stands caused changes in soil moisture and temperature, but did not result in differences in IER‐available N. The alteration of N availability by acacias was shown to increase growth rates of the weedy grass Ehrharta calycina, suggesting that secondary invasions by nitrophilous weedy species may occur after clearing N2‐fixing alien species in the fynbos. It is suggested that managers use controlled burns, the addition of mulch, and the addition of fynbos seed after clearing to lower the levels of available N in the soil and initiate the return of native vegetation.  相似文献   
968.
Plants that have evolved to survive on metal‐rich soils—metallophytes—have key values that must drive research of their unique properties and ultimately their conservation. The ability of metallophytes to tolerate extreme metal concentrations commends them for revegetation of mines and metal‐contaminated sites. Metallophytes can also be exploited in environmental technologies, for example, phytostabilization, phytoremediation, and phytomining. Actions towards conserving metallophyte species are imperative, as metallophytes are increasingly under threat of extinction from mining activity. Although many hundreds of papers describe both the biology and applications of metallophytes, few have investigated the urgent need to conserve these unique species. This paper identifies the current state of metallophyte research, and advocates future research needs for the conservation of metallophyte biodiversity and the sustainable uses of metallophyte species in restoration, rehabilitation, contaminated site remediation, and other nascent phytotechnologies. Six fundamental questions are addressed: (1) Is enough known about the global status of metallophytes to ensure their conservation? (2) Are metallophytes threatened by the activities of the minerals industry, and can their potential for the restoration or rehabilitation of mined and disturbed land be realized? (3) What problems exist in gaining prior informed consent to access metallophyte genetic resources and how can the benefits arising from their uses be equitably shared? (4) What potential do metallophytes offer as a resource base for phytotechnologies? (5) Can genetic modification be used to “design” metallophytes to use in the remediation of contaminated land? (6) Does the prospect of using metallophytes in site remediation and restoration raise ethical issues?  相似文献   
969.
In Central European forestry the establishment of broad-leaved mixed forests is attaining increasing importance, but little information exists about gas exchange characteristics of some of the tree species involved, which are less abundant today. In an old-growth forest in Central Germany (Hainich, Thuringia), (i) I compared morphological and chemical leaf traits that are indicative of leaf gas exchange characteristics among eight co-existing species, and (ii) analysed photosynthetic parameters of saplings and adult trees (lower and upper canopy level) in four of these species (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.).Leaves from the upper canopy in the eight species studied varied significantly in their specific leaf area (12.9–19.4 m2 kg−1), stomatal density (125–313 stomata mm−2), leaf nitrogen concentration (95–157 mmol N m−2) and δ13C content (–27.81 to –25.85‰). F. excelsior and C. betulus were largely contrasting species, which suggests that the species, which were studied in more detail, include the widest difference in leaf gas exchange among the co-existing species. The saplings of the four selected species exhibited shade acclimated leaves with net photosynthesis rates at saturating irradiance (Amax) between 5.0 and 6.4 μmol m−2 s−1. In adult trees Amax of fully sunlit leaves was more variable and ranged from 10.5 (C. betulus) to 16.3 μmol m−2 s−1 (F. excelsior). However, less negative δ13C values in F. excelsior sun leaves point to a strong limitation in gas exchange. In the lower canopy of adult trees Amax of F. excelsior (12.0 μmol m−2 s−1) was also greater than that of A. pseudoplatanus, C. betulus and T. platyphyllos (5.0–5.6 μmol m−2 s−1). This can be explained by the small leaf area and the absence of shade leaves in mature F. excelsior trees. Thus, a considerable variation in leaf traits and gas exchange was found among the co-existing tree species. The results suggest that species-specific characteristics increase the spatial heterogeneity of canopy gas exchange and should be taken into account in the interpretation and prediction of gas flux from mixed stands.In der Forstwirtschaft Mitteleuropas gewinnt die Begründung von Laubmischwäldern zunehmend an Bedeutung, aber über Eigenschaften im Gasaustausch einiger beteiligter Baumarten, die heute nicht so häufig sind, ist wenig bekannt. In einem Altbestand in Mitteldeutschland (Hainich, Thüringen) habe ich (i) morphologische und chemische Eigenschaften von Sonnenblättern, die Hinweise auf Charakteristika im Blattgaswechsel geben, an acht koexistierenden Baumarten untersucht, und (ii) Photosyntheseparameter von juvenilen und adulten Bäumen (unteres und oberes Kronenniveau) von vier dieser Arten (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.) erhoben.Blätter aus dem oberen Kronenraum der acht untersuchten Arten variierten signifikant in der spezifischen Blattfläche (12.9–19.4 m2 kg−1), der Stomatadichte (125–313 Stomata mm−2), dem Blattstickstoffgehalt (95–157 mmol N m−2) und den δ13C-Werten (–27.81 bis –25.85‰). In diesem Kollektiv zeigten F. excelsior und C. betulus groβe Unterschiede, was darauf hindeutet, dass die Arten, die genauer untersucht wurden, die Spannweite an Gaswechseleigenschaften unter den koexistierenden Baumarten umfassen. Die Jungpflanzen der vier ausgewählten Arten besaßen Schattenblätter, deren Netto-Photosyntheserate bei hoher Lichtintensität (Amax) zwischen 5.0 and 6.4 μmol m−2 s−1 variierte. An Sonnenblättern von Altbäumen war Amax variabler und lag zwischen 10.5 (C. betulus) und 16.3 μmol m−2 s−1 (F. excelsior). Allerdings weisen hohe δ13C-Werte in Sonnenblättern von F. excelsior auf eine starke Limitierung des Gasaustauschs hin. Auch in der unteren Krone der Altbäume war Amax von F. excelsior (12.0 μmol m−2 s−1) höher als Amax von A. pseudoplatanus, C. betulus und T. platyphyllos (5.0–5.6 μmol m−2 s−1). Dies kann durch die geringe Blattfläche und die Abwesenheit von Schattenblättern in der Krone adulter Bäume von F. excelsior erklärt werden. Zwischen den koexistierenden Baumarten wurde somit in Bezug auf Blatteigenschaften und Photosyntheseparameter eine erhebliche Variation festgestellt. Die Ergebnisse legen nahe, dass artspezifische Eigenschaften die räumliche Heterogenität des Gaswechsels im Kronenraum erhöhen und bei der Interpretation und Vorhersage von Gasflüssen über Mischbeständen berücksichtigt werden sollten.  相似文献   
970.
Summary A continuous harvest effort can lead a population to extinction. How an “unconscious” immune system would perpetrate such an effort in order to eliminate a self-replicating antigen (a pathogen) becomes an intriguing problem if the system responses are functions of the pathogen population: the responses cannot be a continuous effort as the pathogen vanishes. On theoretical grounds, we show some qualities an immune response must have to support pathogen elimination. Then, three specific mechanisms are addressed: a pathogen-independent positive feedback loop among the responding cells of the system (e.g., B-lymphocyte and T-helper); the persistence of antigen bound to presenting cells; and the programmed expansion/contraction of a pool of responding cells. The maintenance of responding cells due to these mechanisms is the essential feature to the effective clearance of self-replicating agents. Thus, evolutionarily, the primary function of a helper lymphocyte would be to amplify a response and the primary function of memory would be the very elimination of pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号