首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9186篇
  免费   1615篇
  国内免费   3051篇
  2024年   126篇
  2023年   553篇
  2022年   479篇
  2021年   665篇
  2020年   755篇
  2019年   812篇
  2018年   690篇
  2017年   630篇
  2016年   617篇
  2015年   525篇
  2014年   598篇
  2013年   698篇
  2012年   473篇
  2011年   490篇
  2010年   459篇
  2009年   560篇
  2008年   500篇
  2007年   565篇
  2006年   520篇
  2005年   497篇
  2004年   417篇
  2003年   335篇
  2002年   298篇
  2001年   256篇
  2000年   221篇
  1999年   149篇
  1998年   166篇
  1997年   101篇
  1996年   123篇
  1995年   67篇
  1994年   69篇
  1993年   41篇
  1992年   64篇
  1991年   43篇
  1990年   49篇
  1989年   34篇
  1988年   23篇
  1987年   24篇
  1986年   15篇
  1985年   28篇
  1984年   22篇
  1983年   10篇
  1982年   19篇
  1981年   9篇
  1980年   16篇
  1979年   11篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1958年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
不同树种混交林及其纯林对土壤理化性质影响的研究   总被引:41,自引:11,他引:30  
对针阔混交林土壤理化性质的研究表明,针阔混交林比针叶树纯林对土壤的改良作用要好,它使土壤总孔隙度增加2—19%,水分含量增加6—31%,枯枝落叶年凋落量增加2—200%;土壤养分含量全N、NH4-N、代换性Ca、代换性Mg和腐殖质含量分别增加45—75%、33—82%、55—85%、44—84%和37—46%.  相似文献   
62.
Chirapart  Anong  Ohno  M. 《Hydrobiologia》1993,260(1):541-547
Plants of Gracilaria sp.(chorda type), which grow along the coast of Uranouchi Inlet in Tosa Bay, southern Japan, showed the highest biomass in the summer (26 °C to 31 °C) and spring season (15.1 °C to 24.9 °C). Maximum biomass was 6952 g m–2 in July, but gradually decreased in the autumn (30.5 °C in September to 20 °C in November) and winter (19.5 °C in December to 14.9 °C in February). Variation in yields and gel strength of the agars, were shown to depend on the time in the season. After alkali treatment (5% NaOH, 2 h) at three different temperatures (70, 80, and 90 °C), the agars showed gel strengths essentially that of commercial grade agars, with the best gel obtained at 80 °C. Maximum gel strength (1455 g cm–2 of 1.5% agar gel) occurred in winter when the biomass and agar yield were low. Minimum gel strength was in spring. Gel strength was inversely correlated with agar yield, but was positively correlated with apparent viscosity. Maximum viscosity was 40 cP. in December. Gelling temperatures, pH of 1.5% agar gel, and moisture content in agars showed little variation.  相似文献   
63.
64.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
65.
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.  相似文献   
66.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
67.
Freshwater ecosystems are among the most endangered ecosystem in the world. Understanding how human activities affect these ecosystems requires disentangling and quantifying the contribution of the factors driving community assembly. While it has been largely studied in temperate freshwaters, tropical ecosystems remain challenging to study due to the high species richness and the lack of knowledge on species distribution. Here, the use of eDNA-based fish inventories combined to a community-level modelling approach allowed depicting of assembly rules and quantifying the relative contribution of geographic, environmental and anthropic factors to fish assembly. We then used the model predictions to map spatial biodiversity and assess the representativity of sites surveyed in French Guiana within the EU Water Framework Directive (WFD) and highlighted areas that should host unique freshwater fish assemblages. We demonstrated a mismatch between the taxonomic and functional diversity. Taxonomic assemblages between but also within basins were mainly the results of dispersal limitation resulting from basin isolation and natural river barriers. Contrastingly, functional assemblages were ruled by environmental and anthropic factors. The regional mapping of fish diversity indicated that the sites surveyed within the EU WFD had a better representativity of the regional functional diversity than taxonomic diversity. Importantly, we also showed that the assemblages expected to be the most altered by anthropic factors were the most poorly represented in terms of functional diversity in the surveyed sites. The predictions of unique functional and taxonomic assemblages could, therefore, guide the establishment of new survey sites to increase fish diversity representativity and improve this monitoring program.  相似文献   
68.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
69.
Ecosystem management in the face of global change requires understanding how co-occurring threats affect species and communities. Such an understanding allows for effective management strategies to be identified and implemented. An important component of this is differentiating between factors that are within (e.g. invasive predators) or outside (e.g. drought, large wildfires) of a local manager's control. In the global biodiversity hotspot of south-western Australia, small- and medium-sized mammal species are severely affected by anthropogenic threats and environmental disturbances, including invasive predators, fire, and declining rainfall. However, the relative importance of different drivers has not been quantified. We used data from a long-term monitoring program to fit Bayesian state-space models that estimated spatial and temporal changes in the relative abundance of four threatened mammal species: the woylie (Bettongia penicillata), chuditch (Dasyurus geoffroii), koomal (Trichosurus vulpecula) and quenda (Isoodon fusciventor). We then use Bayesian structural equation modelling to identify the direct and indirect drivers of population changes, and scenario analysis to forecast population responses to future environmental change. We found that habitat loss or conversion and reduced primary productivity (caused by rainfall declines) had greater effects on species' spatial and temporal population change than the range of fire and invasive predator (the red fox Vulpes vulpes) management actions observed in the study area. Scenario analysis revealed that a greater extent of severe fire and further rainfall declines predicted under climate change, operating in concert are likely to further reduce the abundance of these species, but may be mitigated partially by invasive predator control. Considering both historical and future drivers of population change is necessary to identify the factors that risk species recovery. Given that both anthropogenic pressures and environmental disturbances can undermine conservation efforts, managers must consider how the relative benefit of conservation actions will be shaped by ongoing global change.  相似文献   
70.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号