首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3538篇
  免费   662篇
  国内免费   2088篇
  6288篇
  2024年   67篇
  2023年   249篇
  2022年   223篇
  2021年   323篇
  2020年   323篇
  2019年   361篇
  2018年   262篇
  2017年   272篇
  2016年   294篇
  2015年   247篇
  2014年   249篇
  2013年   246篇
  2012年   219篇
  2011年   213篇
  2010年   206篇
  2009年   254篇
  2008年   220篇
  2007年   285篇
  2006年   234篇
  2005年   214篇
  2004年   168篇
  2003年   152篇
  2002年   133篇
  2001年   133篇
  2000年   103篇
  1999年   82篇
  1998年   91篇
  1997年   43篇
  1996年   65篇
  1995年   38篇
  1994年   31篇
  1993年   29篇
  1992年   56篇
  1991年   25篇
  1990年   34篇
  1989年   22篇
  1988年   14篇
  1987年   8篇
  1986年   9篇
  1985年   14篇
  1984年   8篇
  1982年   6篇
  1981年   6篇
  1980年   10篇
  1979年   7篇
  1977年   5篇
  1976年   4篇
  1972年   5篇
  1971年   4篇
  1958年   8篇
排序方式: 共有6288条查询结果,搜索用时 15 毫秒
31.
北京城区花粉致敏植物种类、分布及物候特征   总被引:9,自引:0,他引:9  
为了解北京城区花粉致敏植物的种类、分布格局和物候特征,结合文献调研及专家访问,对北京5环以内的花粉致敏植物进行了调查.结果表明:1)北京城区五环内共有致敏花粉植物19科32属99种,其中北京本地种52种,占总数的52.5%,国内其他地区引进种和国外引进种各占总数的26.3%和21.2%;2)北京城区32属花粉致敏植物以北温带成分为主,占40.6%,其次是世界性分布与泛热带分布;3)公园内的花粉致敏植物种数最多,行道树种中花粉致敏植物的比例最高.北京城区各功能区中花粉强致敏草本的盖度,从大到小的顺序是城市废弃地>体育中心及机关单位>道路绿地>公园>居民区>学校>广场;4)北京城区木本花粉致敏植物的花期主要集中在3—4月,草本在7—9月.  相似文献   
32.
33.
An attempt has been made to build a model of human rhinovirus 2 (HRV2) based on the known human rhinovirus 14 (HRV14) structure. HRV2 was selected because its amino acid sequence is known and because it belongs to the minor rhinovirus receptor class as compared to HRV14, which belongs to the major class. Initial alignment of HRV2 with HRV14 based on the primary sequence and the knowledge of the three-dimensional structure of HRV14 showed that the most probable position of the majority of insertions and deletions occurred in the vicinity of the neutralizing immunogenic sites (NIm). Out of a total of 855 amino acids present in one copy of each of the capsid proteins VP1 through VP4 of HRV14, 411 are different between the two viruses. There are also 6 amino acid residues inserted and 14 residues deleted in HRV2 relative to HRV14. Examination of amino acid interactions showed several cases of conservation of function, e.g., salt bridges or the filling of restricted space. The largest variation amongst the residues lining the canyon, the putative receptor binding site, was in the carboxy-terminal residues of VP1.  相似文献   
34.
森林生态系统DOM的来源、特性及流动   总被引:17,自引:1,他引:17  
可溶性有机物质(Dissolved Organic Matter)是森林生态系统主要的可移动碳库及重要的养分库。系统综述了森林生态系统DOM的来源,组成,性质,季节动态;DOM释放与存留机制及影响因素,森林生态系统DOM的流动及干扰对DOM动态影响等,已有研究表明DOM的森林生态系统C、N、P循环,成土作用,污染物迁移等方面起着重要作用。今后森林生态系统DOM的研究应集中于以几方面:(1)确定森林生态系统中DOM源和汇;(2)评价森林水文条件对DOM释放与存留的调节作用;(3)探讨全球气候变化对森林生态系统DOM的影响;(4)可溶性有机氮(Dissolved Organic Nitrogen),可溶性有机磷(Dissolved Organic Phosphorus)动态与可溶性有碳(Dissolved Organic Carbon)动态的差别。  相似文献   
35.
生物土壤结皮的分布影响因子及其监测   总被引:14,自引:0,他引:14  
生物土壤结皮在荒漠化地区广泛分布。本文详细论述了生物土壤结皮的分布规律及其影响因素,如海拔高度、土壤、维管植物群落水分条件和干扰,以及生物土壤结皮在生态系统和景观变化监测和评价中的作用等。同时对中国西北地区生物土壤结皮的生态学研究和开发应用提供了研究的重点和方向。  相似文献   
36.
Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.  相似文献   
37.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
38.
Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were co-equal. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2–3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study, with annual GPP being similar (488 and 519 g O2 m−2 y−1 or 183 and 195 g C m−2 y−1) but annual ER being higher in 2004 than 2005 (−1,645 vs. −1,292 g O2 m−2 y−1 or −617 and −485 g C m−2 y−1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of these important ecosystems.  相似文献   
39.
BACKGROUND AND AIMS: Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. METHODS: Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. KEY RESULTS: Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. CONCLUSIONS: These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.  相似文献   
40.
Margins of water reservoirs associated with dams can have high‐frequency tides, promoting soil erosion and nutrient leaching. We propose the use of biocrusts for restoration and ecological engineering purposes, due to their poikilohydric character, to stabilize reservoir margins. We promoted biocrust growth under controlled conditions, testing two types of substrate: native sand and organic substrate. After 2 months, biocrusts grew on organic substrate covering almost all the area, but not on native sand. This fast and easy nature‐based solution for soil stabilization can be used as an environmental engineering tool in highly degraded sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号