首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15980篇
  免费   1044篇
  国内免费   1532篇
  2024年   42篇
  2023年   285篇
  2022年   314篇
  2021年   528篇
  2020年   459篇
  2019年   552篇
  2018年   435篇
  2017年   463篇
  2016年   546篇
  2015年   601篇
  2014年   760篇
  2013年   942篇
  2012年   569篇
  2011年   666篇
  2010年   579篇
  2009年   723篇
  2008年   771篇
  2007年   867篇
  2006年   743篇
  2005年   694篇
  2004年   672篇
  2003年   584篇
  2002年   526篇
  2001年   437篇
  2000年   435篇
  1999年   380篇
  1998年   420篇
  1997年   324篇
  1996年   344篇
  1995年   310篇
  1994年   255篇
  1993年   241篇
  1992年   251篇
  1991年   227篇
  1990年   180篇
  1989年   180篇
  1988年   144篇
  1987年   122篇
  1986年   109篇
  1985年   150篇
  1984年   118篇
  1983年   75篇
  1982年   109篇
  1981年   94篇
  1980年   66篇
  1979年   72篇
  1978年   56篇
  1977年   41篇
  1976年   26篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
963.
In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock‐down lines, osaux3‐1 and osaux3‐2, in wild‐type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3‐1 and osaux3‐2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up‐regulated in the root apex under aluminium (Al) stress, and osaux3‐2 is insensitive to Al treatments. Furthermore, 1‐naphthylacetic acid accented the sensitivity of WT/DJ and osaux3‐2 to respond to Al stress. Auxin concentrations, Al contents, and Al‐induced reactive oxygen species‐mediated damage in osaux3‐2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al‐induced inhibition of root growth. This study uncovers a novel pathway alleviating Al‐induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al‐tolerant rice species.  相似文献   
964.
965.
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light‐saturated rates of photosynthesis, Amax) and water transport capacity (leaf hydraulic conductance, Kleaf). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near‐isogenic lines grown at two different irradiance levels. Kleaf, minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax, leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long‐term water‐use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.  相似文献   
966.
Fruit and seed crop production heavily relies on successful stigma pollination, pollen tube growth, and fertilization of female gametes. These processes depend on production of viable pollen grains, a process sensitive to high‐temperature stress. Therefore, rising global temperatures threaten worldwide crop production. Close observation of plant development shows that high‐temperature stress causes morpho‐anatomical changes in male reproductive tissues that contribute to reproductive failure. These changes include early tapetum degradation, anther indehiscence, and deformity of pollen grains, all of which are contributing factors to pollen fertility. At the molecular level, reactive oxygen species (ROS) accumulate when plants are subjected to high temperatures. ROS is a signalling molecule that can be beneficial or detrimental for plant cells depending on its balance with the endogenous cellular antioxidant system. Many metabolites have been linked with ROS over the years acting as direct scavengers or molecular stabilizers that promote antioxidant enzyme activity. This review highlights recent advances in research on anther and pollen development and how these might explain the aberrations seen during high‐temperature stress; recent work on the role of nitrogen and carbon metabolites in anther and pollen development is discussed including their potential role at high temperature.  相似文献   
967.
Vertebral bodies of teleost fish are formed by the sclerotomal bone covering the chordacentrum. The internal part of the sclerotomal bone is composed of an amphicoelous hourglass shaped autocentrum, which is common in most fish species. In contrast, the external shape of the sclerotomal bone varies extensively among species. There are multiple hypotheses regarding the composition and formation of the external structure. However, as they are based on studies of few extant or extinct species, their applicability to other species remains to be clarified. To understand the morphology, formation, and composition of vertebral bodies in teleosts, we performed a comparative analysis using micro-CT scans of 32 species from 10 orders of Teleostei and investigated the detailed morphology of the sclerotomal bone, especially its plate-like ridge and trabeculae. We discovered two structural characteristics that are shared among most of the examined species. One was the sheet-like trabeculae that extend radially from the center of the vertebral body with a constant thickness. The other was the presence of hollow spaces on the internal parts of the lateral ridge and trabeculae. The combination of different arrangements of sheet-like trabeculae and internal hollow spaces formed different shapes of the lateral structure of the vertebral body. The properties of these two characteristics suggest that the external part of the sclerotomal bone grows outward by deposition at the bone tip, and that, concurrently, bone absorption occurs in the internal part of the sclerotomal bone. The vertebral arches were also formed by the sheet-like trabeculae, indicating that both, the vertebral body and the arches, are formed by the same component. The micro-CT scanning data were uploaded to a public database so they can be used for future studies on fish vertebrae.  相似文献   
968.
杨阳  罗坤  江超  吴建伟  朱贵明 《昆虫学报》2019,62(5):578-585
【目的】阐明家蝇 Musca domestica 幼虫对食物中各种多不饱和脂肪酸的富集能力以及代谢转化情况,并探究各种多不饱和脂肪酸对家蝇幼虫生长的影响。【方法】在基础饲料中添加不同浓度(3%, 6%和12%)的多不饱和脂肪酸(亚油酸、α-亚麻酸、花生四烯酸和二十二碳六烯酸)饲养经过脱脂传代培养的家蝇幼虫;提取家蝇幼虫的总脂肪酸,利用气相色谱仪进行检测和分析;测定统计幼虫体重,以分析多不饱和脂肪酸对家蝇幼虫生长的影响。【结果】亚油酸、α-亚麻酸和花生四烯酸在家蝇幼虫体内均能被富集,且它们的富集程度随着食物中多不饱和脂肪酸的添加浓度的升高而增加,其中亚油酸、α-亚麻酸和花生四烯酸在幼虫体内富集的最高含量(占体内总脂肪酸的比例)分别为21.93%, 16.13%和9.68%,而二十二碳六烯酸不能在家蝇幼虫体内富集,提示家蝇幼虫食物中添加的各种多不饱和脂肪酸经过代谢后并没有在其体内产生新的脂肪酸,而食物中添加的二十二碳六烯酸在家蝇幼虫体内被分解代谢后消除。饲喂α-亚麻酸及花生四烯酸后家蝇幼虫体重增长较为明显,其中6%α-亚麻酸添加组的幼虫体重显著高于对照组(取食脱脂饲料)和3%和12%α-亚麻酸添加组,3%和6%花生四烯酸添加组的幼虫体重显著高于对照组和12%花生四烯酸添加组。【结论】家蝇幼虫体内能够从食物中富集部分多不饱和脂肪酸,多不饱和脂肪酸碳链越长其富集程度越低直至不能富集,富集的多不饱和脂肪酸对家蝇幼虫生长有不同程度的影响。  相似文献   
969.
From an initial isolated position as the oldest evolutionary prototype of a bird, Archaeopteryx has, as a result of recent fossil discoveries, become embedded in a rich phylogenetic context of both more and less crownward stem-group birds. This has prompted debate over whether Archaeopteryx is simply a convergently bird-like non-avialan theropod. Here we show, using the first synchrotron microtomographic examination of the genus, that the eighth or Daiting specimen of Archaeopteryx possesses a character suite that robustly constrains it as a basal avialan (primitive bird). The specimen, which comes from the Mörnsheim Formation and is thus younger than the other specimens from the underlying Solnhofen Formation, is distinctive enough to merit designation as a new species, Archaeopteryx albersdoerferi sp. nov., but is recovered in close phylogenetic proximity to Archaeopteryx lithographica. Skeletal innovations of the Daiting specimen, such as fusion and pneumatization of the cranial bones, well vascularized pectoral girdle and wing elements, and a reinforced configuration of carpals and metacarpals, suggest that it may have had more characters seen in flying birds than the older Archaeopteryx lithographica. These innovations appear to be convergent on those of more crownward avialans, suggesting that Bavarian archaeopterygids independently acquired increasingly bird-like traits over time. Such mosaic evolution and iterative exploration of adaptive space may be typical for major functional transitions like the origin of flight.  相似文献   
970.
Food waste (FW) management is a global conundrum because of the rapid population growth and growing economic activity. Currently, incineration and landfill are still the main means for FW management, while their environmental sustainability and economic viability have been in question. Recently, the biological processes including anaerobic digestion, aerobic composting, bioethanol fermentation, feed fermentation etc. have attracted increasing interest with the aims for energy and resource recovery from FW. However, these biological approaches have inherent drawbacks, and cannot provide a comprehensive solution for future FW management. Therefore, this review attempts to offer a critical and holistic analysis of current biotechnologies for FW management with the focus on the challenges and solutions forward. The biological approaches towards future FW management should be able to achieve both environmental sustainability and economic viability. In this instance, the concept of zero solid discharge-driven resource recovery has thus been put forward. According to which, several innovative biological processes for FW management are further elucidated with critical analysis on their engineering feasibility and environmental sustainability. It turns out that is an urgent need for turning current single task-orientated bioprocess to an integrated biological process with multiple tasks of concurrent recovery of water, resource and energy together with zero-solid discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号