首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6703篇
  免费   1143篇
  国内免费   3171篇
  2024年   103篇
  2023年   382篇
  2022年   341篇
  2021年   446篇
  2020年   591篇
  2019年   682篇
  2018年   523篇
  2017年   500篇
  2016年   507篇
  2015年   442篇
  2014年   505篇
  2013年   541篇
  2012年   442篇
  2011年   418篇
  2010年   343篇
  2009年   390篇
  2008年   379篇
  2007年   430篇
  2006年   367篇
  2005年   337篇
  2004年   271篇
  2003年   224篇
  2002年   202篇
  2001年   199篇
  2000年   157篇
  1999年   137篇
  1998年   124篇
  1997年   101篇
  1996年   106篇
  1995年   100篇
  1994年   85篇
  1993年   62篇
  1992年   62篇
  1991年   66篇
  1990年   60篇
  1989年   42篇
  1988年   34篇
  1987年   28篇
  1986年   21篇
  1985年   40篇
  1984年   45篇
  1983年   32篇
  1982年   53篇
  1981年   21篇
  1980年   13篇
  1979年   18篇
  1978年   10篇
  1977年   10篇
  1976年   8篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
101.
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500–850 mm year−1) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April–September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.  相似文献   
102.
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.  相似文献   
103.
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280–400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.  相似文献   
104.
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2-induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2-induced higher foliage area.  相似文献   
105.
Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.  相似文献   
106.
中国优质水果资源的分布与适宜生态环境   总被引:3,自引:0,他引:3  
根据农业部在80年代两次组织评选出的全国189个优质水果产地的生态环境资料,用微型电子计算机系统建立数据库,统计分析柑桔、苹果和梨优质产品的构成比例、产区分布地域及其适宜的环境指标和主栽品种的生态适应性,为果树良种区域化栽培与选育提供依据。  相似文献   
107.
The Duwamish River Floating Wetlands project designed, built, and deployed constructed floating wetlands in the estuary of the urban Duwamish River in Seattle, Washington, during the 2019 and 2020 outmigration seasons for juvenile salmon. Using a “safe-to-fail” methodology and adaptive management strategies, these innovative floating wetland prototypes were custom designed to provide the native plants, invertebrates and slow water habitat that juvenile salmon require during their transition from fresh to salt water, and were monitored for these outcomes. This paper will provide insight into the prototype designs, adaptive management strategies and plant performance, and unique public-private-academic-community partnerships that supported 2 years of design and research.  相似文献   
108.
Understanding community saturation is fundamental to ecological theory. While investigations of the diversity of evolutionary stable states (ESSs) are widespread, the diversity of communities that have yet to reach an evolutionary endpoint is poorly understood. We use Lotka–Volterra dynamics and trait-based competition to compare the diversity of randomly assembled communities to the diversity of the ESS. We show that, with a large enough founding diversity (whether assembled at once or through sequential invasions), the number of long-time surviving species exceeds that of the ESS. However, the excessive founding diversity required to assemble a saturated community increases rapidly with the dimension of phenotype space. Additionally, traits present in communities resulting from random assembly are more clustered in phenotype space compared to random, although still markedly less ordered than the ESS. By combining theories of random assembly and ESSs we bring a new viewpoint to both the saturation and random assembly literature.  相似文献   
109.
Theory suggests that increasingly long, negative feedback loops of many interacting species may destabilize food webs as complexity increases. Less attention has, however, been paid to the specific ways in which these ‘delayed negative feedbacks’ may affect the response of complex ecosystems to global environmental change. Here, we describe five fundamental ways in which these feedbacks might pave the way for abrupt, large-scale transitions and species losses. By combining topological and bioenergetic models, we then proceed by showing that the likelihood of such transitions increases with the number of interacting species and/or when the combined effects of stabilizing network patterns approach the minimum required for stable coexistence. Our findings thus shift the question from the classical question of what makes complex, unaltered ecosystems stable to whether the effects of, known and unknown, stabilizing food-web patterns are sufficient to prevent abrupt, large-scale transitions under global environmental change.  相似文献   
110.
The accuracy of toad snapping towards moving worm dummies under various levels of dim illumination (from absolute threshold to moonlight) was videorecorded and related to spike responses of retinal ganglion cells exposed to equivalent stimuli. Some toads (at ca. 16 °C) successfully snapped at dummies that produced only one photoisomerization per 50 rods per second in the retina, in good agreement with thresholds of sensitive retinal ganglion cells. One factor underlying such high sensitivity is extensive temporal summation by the ganglion cells. This, however, is inevitably accompanied by very long response latencies (around 3 s near threshold), whereby the information reaching the brain shows the dummy in a position where it was several seconds earlier. Indeed, as the light was dimmed, snaps were displaced successively further to the rear of the dummy, finally missing it. The results in weak but clearly supra-threshold illumination indicate that snaps were aimed at the advancing head as seen by the brain, but landed further backwards in proportion to the retinal latency. Near absolute threshold, however, accuracy was too good, suggesting that the animal had recourse to a neural representation of the regularly moving dummies to correct for the slowness of vision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号