首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4473篇
  免费   928篇
  国内免费   2943篇
  2024年   93篇
  2023年   323篇
  2022年   293篇
  2021年   380篇
  2020年   504篇
  2019年   582篇
  2018年   438篇
  2017年   407篇
  2016年   430篇
  2015年   352篇
  2014年   394篇
  2013年   383篇
  2012年   345篇
  2011年   325篇
  2010年   295篇
  2009年   294篇
  2008年   290篇
  2007年   325篇
  2006年   253篇
  2005年   241篇
  2004年   182篇
  2003年   172篇
  2002年   138篇
  2001年   148篇
  2000年   110篇
  1999年   85篇
  1998年   80篇
  1997年   61篇
  1996年   53篇
  1995年   63篇
  1994年   49篇
  1993年   27篇
  1992年   36篇
  1991年   37篇
  1990年   26篇
  1989年   21篇
  1988年   11篇
  1987年   8篇
  1986年   4篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   29篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1975年   4篇
  1958年   3篇
排序方式: 共有8344条查询结果,搜索用时 265 毫秒
141.
An ecological niche has been defined as an n‐dimensional hypervolume formed by conditions and resources that species need to survive, grow, and reproduce. In practice, such niche dimensions are measurable and describe how species share resources, which has been thought to be a crucial mechanism for coexistence and a major driver of broad biodiversity patterns. Here, we investigate resource partitioning and trophic interactions of three sympatric, phylogenetically related and morphologically similar species of thrushes (Turdus spp.). Based on one year of data collected in southern Brazil, we investigated niche partitioning using three approaches: diet and trophic niche assessed by fecal analysis, diet and niche estimated by stable isotopes in blood and mixing models, and bipartite network analysis derived from direct diet and mixing model outputs. Approaches revealed that the three sympatric thrushes are generalists that feed on similar diets, demonstrating high niche overlap. Fruits from C3 plants were one of the most important food items in their networks, with wide links connecting the three thrush species. Turdus amaurochalinus and T. albicollis had the greatest trophic and isotopic niche overlap, with 90% and 20% overlap, respectively. There was partitioning of key resources between these two species, with a shared preference for fig tree fruits—Ficus cestrifolia (T. amaurochalinus PSIRI% = 11.3 and T. albicollis = 11.5), which was not present in the diet of T. rufiventris. Results added a new approach to the network analysis based on values from the stable isotope mixing models, allowing comparisons between traditional dietary analysis and diet inferred by isotopic mixing models, which reflects food items effectively assimilated in consumer tissues. Both are visualized in bipartite networks and show food‐consumers link strengths. This approach could be useful to other studies using stable isotopes coupled to network analysis, particularly useful in sympatric species with similar niches.  相似文献   
142.
Seminatural habitats are declining throughout the world; thus, the role of small anthropogenic habitats in the preservation of plants is becoming increasingly appreciated. Here, we surveyed the orchid flora of roadside verges in five Central European countries (Austria, Hungary, Romania, Slovakia, and Slovenia) and tested how the surrounding landscape matrix affects the overall number of species and individuals, and also different functional groups of orchids. We found more than 2,000 individuals of 27 orchid species during our surveys. According to our results, the increasing coverage of agricultural and urban areas negatively affects both the number of orchid species and individuals on roadsides. Our study further suggests that differences in the surrounding habitats affect which species are found on roadsides, since the increasing coverage of grasslands or forested areas around orchid occurrences had a significant positive effect on the number of grassland or forest‐dwelling species and individuals, respectively. Most variance in orchid numerosity and diversity was explained by the cover of the suitable habitat types of the respective taxa in the surrounding landscape of the sampling points. This highlights the importance of roadsides acting as refugia for numerous species and valuable plant communities as well as in supporting biodiversity in general.  相似文献   
143.
144.
The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.  相似文献   
145.
Understanding animal foraging ecology requires large sample sizes spanning broad environmental and temporal gradients. For pollinators, this has been hampered by the laborious nature of morphologically identifying pollen. Identifying pollen from urban environments is particularly difficult due to the presence of diverse ornamental species associated with consumer horticulture. Metagenetic pollen analysis represents a potential solution to this issue. Building upon prior laboratory and bioinformatic methods, we applied quantitative multilocus metabarcoding to characterize the foraging ecology of honeybee colonies situated in urban, suburban, mixed suburban–agricultural and rural agricultural sites in central Ohio, USA. In cross‐validating a subset of our metabarcoding results using microscopic palynology, we find strong concordance between the molecular and microscopic methods. Our results suggest that forage from the agricultural site exhibited decreased taxonomic diversity and temporal turnover relative to the urban and suburban sites, though the generalization of this observation will require replication across additional sites and cities. Our work demonstrates the power of honeybees as environmental samplers of floral community composition at large spatial scales, aiding in the distinction of taxa characteristically associated with urban or agricultural land use from those distributed ubiquitously across the sampled landscapes. Observed patterns of high forage diversity and compositional turnover in our more urban sites are likely reflective of the fine‐grain heterogeneity and high beta diversity of urban floral landscapes at the scale of honeybee foraging. This provides guidance for future studies investigating how relationships between urbanization and measures of pollinator health are mediated by variation in floral resource dynamics across landscapes.  相似文献   
146.
In studies based on electronic health records (EHR), the frequency of covariate monitoring can vary by covariate type, across patients, and over time, which can limit the generalizability of inferences about the effects of adaptive treatment strategies. In addition, monitoring is a health intervention in itself with costs and benefits, and stakeholders may be interested in the effect of monitoring when adopting adaptive treatment strategies. This paper demonstrates how to exploit nonsystematic covariate monitoring in EHR‐based studies to both improve the generalizability of causal inferences and to evaluate the health impact of monitoring when evaluating adaptive treatment strategies. Using a real world, EHR‐based, comparative effectiveness research (CER) study of patients with type II diabetes mellitus, we illustrate how the evaluation of joint dynamic treatment and static monitoring interventions can improve CER evidence and describe two alternate estimation approaches based on inverse probability weighting (IPW). First, we demonstrate the poor performance of the standard estimator of the effects of joint treatment‐monitoring interventions, due to a large decrease in data support and concerns over finite‐sample bias from near‐violations of the positivity assumption (PA) for the monitoring process. Second, we detail an alternate IPW estimator using a no direct effect assumption. We demonstrate that this estimator can improve efficiency but at the potential cost of increase in bias from violations of the PA for the treatment process.  相似文献   
147.
Cymothoid fish parasites settle on hosts in ways that may impact fish health and energetics. High abundances of Artystone minima observed in Nannostomus beckfordi from the Jeju River in eastern Amazonia were investigated to answer the following questions: (a) What factors are associated with the high prevalence at this locality?; (b) Is high abundance associated with co‐infestation of alternative hosts?; and (c) Is parasite presence associated with host species growth and/or reproduction? Fish assemblages were sampled quarterly (August 2017–May 2018) from five habitats along with environmental data. Parasitic indices were calculated, and parasite presence used to evaluate differences in growth of hosts using analysis of covariance considering host sex and sampling season (wet vs. dry). Parasites were only abundant in one of the habitats, a large, shallow backwater bay with macrophytes. Abiotic environmental factors (flow and depth) likely impact parasite transmission and are, therefore, particularly important in producing these local patterns. Two secondary hosts, Hyphessobrycon cf. rosaceus and Moenkhausia collettii, were found in the wet season. Based on host biology compared to other fish in the habitat, parasite infestation is inferred to be depth associated and long‐term infestation is apparently limited in alternative hosts. Parasite presence was significantly associated with reduced weight (standardized for length) of female Nannostomus beckfordi in the wet season. Furthermore, ovaries of non‐parasitized females from the wet season presented a range of maturation stages, while parasitized females were all immature, indicating a significant association of parasites with host reproductive capacity. Abstract in Portuguese is available with online material  相似文献   
148.
Assays used to evaluate the transmission-blocking activity of antimalarial drugs are largely focused on their potential to inhibit or reduce the infectivity of gametocytes, the blood stages of the parasite that are responsible for the onward transmission to the mosquito vector. For this purpose, the drug is administered concomitantly with gametocyte-infected blood, and the results are evaluated as the percentage of reduction in the number of oocysts in the mosquito midgut. We report the results of a series of experiments that explore the transmission-blocking potential of two key antimalarial drugs, artesunate and sulfadoxine-pyrimethamine, when administered to mosquitoes already infected from a previous blood meal. For this purpose, uninfected mosquitoes and mosquitoes carrying a 6 day old Plasmodium relictum infection (early oocyst stages) were allowed to feed either on a drug-treated or an untreated host in a fully factorial experiment. This protocol allowed us to bypass the gametocyte stages and establish whether the drugs have a sporontocidal effect, i.e. whether they are able to arrest the ongoing development of oocysts and sporozoites, as would be the case when a mosquito takes a post-infection treated blood meal. In a separate experiment, we also explored whether a drug-treated blood meal impacted key life history traits of the mosquito relevant for transmission, and if this depended on their infection status. Our results showed that feeding on an artesunate- or sulfadoxine-pyrimethamine-treated hosts has no epidemiologically relevant effects on the fitness of infected or uninfected mosquitoes. In contrast, when infected mosquitoes fed on an sulfadoxine-pyrimethamine-treated host, we observed both a significant increase in the number of oocysts in the midgut, and a drastic decrease in both sporozoite prevalence (?30%) and burden (?80%) compared with the untreated controls. We discuss the potential mechanisms underlying these seemingly contradictory results and contend that, provided the results are translatable to human malaria, the potential epidemiological and evolutionary consequences of the current preventive use of sulfadoxine-pyrimethamine in malaria-endemic countries could be substantial.  相似文献   
149.
Free-roaming equids (i.e., feral horses [Equus caballus] and burros [Equus asinus]) are widely distributed and locally abundant across the rangelands of the western United States. The 1971 Wild Free Roaming Horse and Burro Act (WFRHBA) gave the Bureau of Land Management (BLM) and United States Forest Service (USFS) the legal authority to manage these animals on designated public lands. To fulfill this responsibility, federal agencies established an Appropriate Management Level (AML), defined as the number of horses or burros that can be sustained on a given management unit under prevailing environmental conditions and land uses. Although the WFRHBA specifies that feral equids must be managed in ecological balance with other land uses, including conservation of native wildlife, population control measures such as gathers, contraception, and adoptions have failed to keep pace with intrinsic growth rates. Over 80% of federally managed herds currently exceed prescribed population levels, making the potential for competition between native ungulates and feral equids a growing concern among state wildlife agencies. Mule deer (Odocoileus hemionus), pronghorn (Antilocapra americana), elk (Cervus canadensis), and bighorn sheep (Ovis canadensis) are of ecological and economic value to the states where they occur, and all exhibit some degree of distributional, habitat, or dietary overlap with horses or burros. Notwithstanding the scale of the problem, to date there have been no range-wide assessments of competition potential among native and feral ungulates for space, forage, or water. To address this need, we compiled demographic, jurisdictional, and species occurrence data collected from 2010–2019 by federal and state agencies. We used these data to map the distributions of 4 native ungulate species across federal equid management units (FEMUS) in 10 western states (n = 174). We then made within-state rankings of the 50 units that were ≥2 times over AML and encompassed ≥3 native ungulates. Collectively, FEMUs covered approximately 225,000 km2, representing 18% of all BLM and USFS lands in affected states. Each FEMU supported ≥1 native ungulate and 14% contained all 4. The degree of overlap between native and feral species varied by state, ranging from <1% for mule deer in Montana, to 40% for bighorn sheep in Nevada. Oregon had the largest proportion of units that supported all 4 native ungulates (58%), whereas Montana and New Mexico had the fewest equids, but all populations were over target densities. Despite the perception that the problem of equid abundance is limited to the Great Basin states, high intrinsic growth rates and social constraints on management practices suggest all affected states should monitor range conditions and native ungulate demography in areas where forage and water resources are limited and expanding equid populations are a concern. © 2021 The Wildlife Society.  相似文献   
150.
We aimed to explore the population dynamics of snail in 3 sites of the White Nile in Sudan. More specifically, we aimed to investigate the annual patterns of snail populations that act as intermediate hosts of schistosomes and monthly snail infection rates and ecological characteristics presumably related to snail populations. We collected snails for 1 year monthly at 3 different shore sites in the vicinity of El Shajara along the White Nile river in Khartoum State, Sudan. In addition, we measured air and water temperatures, water turbidities, vegetation coverages, and water depths and current speeds. Most of the collected snails were Biomphalaria pfeifferi and Bulinus truncatus. The population densities of snails and their infection rates varied across survey sites. The collected snails liberated S. mansoni and S. haematobium cercariae as well as Amphistome and Echinostome cercariae. Infected snails were found during March–June. The ecological characteristics found to be associated with the absence of snails population were: high turbidity, deep water, low vegetation coverage (near absence of vegetation), high water temperature, and high current speed. To our knowledge, this is the first longitudinal study of the snail population and ecological characteristics in the main basin of the White Nile river.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号