首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4473篇
  免费   928篇
  国内免费   2943篇
  2024年   93篇
  2023年   323篇
  2022年   293篇
  2021年   380篇
  2020年   504篇
  2019年   582篇
  2018年   438篇
  2017年   407篇
  2016年   430篇
  2015年   352篇
  2014年   394篇
  2013年   383篇
  2012年   345篇
  2011年   325篇
  2010年   295篇
  2009年   294篇
  2008年   290篇
  2007年   325篇
  2006年   253篇
  2005年   241篇
  2004年   182篇
  2003年   172篇
  2002年   138篇
  2001年   148篇
  2000年   110篇
  1999年   85篇
  1998年   80篇
  1997年   61篇
  1996年   53篇
  1995年   63篇
  1994年   49篇
  1993年   27篇
  1992年   36篇
  1991年   37篇
  1990年   26篇
  1989年   21篇
  1988年   11篇
  1987年   8篇
  1986年   4篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   29篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1975年   4篇
  1958年   3篇
排序方式: 共有8344条查询结果,搜索用时 406 毫秒
101.
Succession is a key ecological process that supports our understanding of community assembly and biotic interactions. Dispersal potential and dispersal strategies, such as wind- or animal-dispersal, have been assumed to be highly relevant for the success of plant species during succession. However, research yielded varying results on changes in dispersal modes between successional stages. Here, we test the hypotheses that (a) vascular plant species that use a number of dispersal modes dominate in early stages of succession while species specialized on one/few dispersal modes increase in abundance towards later stages of succession; (b) species well adapted to wind-dispersal (anemochory) will peak in abundance in early successional stages and (c) species well adapted to adhesive dispersal (epizoochory) will increase with proceeding succession. We test these hypotheses in four sites within agriculturally dominated landscapes in Germany. Agricultural use in these sites was abandoned 20–28 years ago, leaving them to secondary succession. Sites have been monitored for plant biodiversity ever since. We analyze changes in plant species richness and abundance, number of dispersal modes and two ranking indices for wind- and adhesive dispersal by applying generalized linear mixed-effect models. We used both abundance-weighted and unweighted dispersal traits in order to gain a comprehensive picture of successional developments. Hypothesis (a) was supported by unweighted but not abundance-weighted data. Anemochory showed no consistent changes across sites. In contrast, epizoochory (especially when not weighted by abundance) turned out to be an indicator of the transition from early to mid-successional stages. It increased for the first 9–16 years of succession but declined afterwards. Species richness showed an opposing pattern, while species abundance increased asymptotically. We suggest that plant-animal interactions play a key role in mediating these processes: By importing seeds of highly competitive plant species, animals are likely to promote the increasing abundance of a few dominant, highly epizoochorous species. These species outcompete weak competitors and species richness decreases. However, animals should as well promote the subsequent increase of species richness by disturbing the sites and creating small open patches. These patches are colonized by weaker competitors that are not necessarily dispersed by animals. The changes in the presence of epizoochorous species indicate the importance of plant traits and related plant–animal interactions in the succession of plant communities.  相似文献   
102.
103.
海岸带植物叶片的化学计量学特征及其影响因素可以为改善海岸带的生态环境提供理论依据。选取海南岛沿岸12个市(县)海岸带木麻黄防护林的木麻黄和周边沙滩上的藤本植物厚藤为研究对象,通过测定木麻黄与厚藤叶片中的碳(C)、氮(N)和磷(P)含量,分析两种植物叶片C、N和P的化学计量学特征及其差异,探究不同环境因子对两种植物叶片C、N、P含量、C:N、C:P和N:P的影响,以期寻找影响海岸带植被生长的主要限制因素。结果表明:海南岛木麻黄叶片C、N和P的平均含量分别是399.06±20.29、12.56±1.04、1.04±0.35 g·kg-1,C:N、C:P和N:P分别为32.04±2.82、420.65±121.27和12.92±3.21;厚藤叶片C、N和P的平均含量分别是364.31±30.20、12.84±1.96和2.06±0.64 g·kg-1,C:N、C:P和N:P分别为29.13±4.95、185.85±63.14和6.47±2.12。相关性分析结果表明:木麻黄叶片的N含量与年平均气温和年平均降水量呈显著正相关关系,P含量与年平均降水量呈极显著正相关关系,C:P和N:P与年平均降水量呈显著负相关关系;厚藤叶片C含量与年平均气温呈显著正相关,C:N与年平均降水量呈显著负相关。木麻黄叶片的N含量与10~20 cm土层的SOC呈显著负相关关系,C:N与10~20 cm土层的SOC呈显著正相关,C:P与0~10 cm土层的C:N呈显著正相关关系;厚藤叶片的C含量与10~20 cm土层的SOC呈显著负相关关系,P含量与0~10 cm土层的TN含量,N:P和10~20 cm的SOC含量呈正相关关系,C:N与0~10 cm土层的C:N呈显著正相关关系,C:P与0~10 cm的TN含量呈显著负相关关系而与0~10 cm土层的C:N呈极显著正相关关系,N:P与0~10 cm土层的TN含量呈显著负相关关系。研究结果表明海南岛海岸带植被叶片的碳氮含量较低,N可能是影响该区域植物生长的主要因子,同时,植被生长受到年平均气温、年平均降水量的共同影响,受土壤养分含量影响低,环境因子对不同类型的植物的影响并不相同。  相似文献   
104.
Operation Crayweed focuses on the restoration of underwater forests that disappeared from the coastline of Sydney, Australia’s largest city, 40 years previously. We show how a combination of science, hands‐on restoration, community engagement and art has helped the project to reach its goals as well as raise awareness about the importance of underwater kelp forests that are experiencing global decline.  相似文献   
105.
106.
Tropospheric ozone (O3) is an important stressor in natural ecosystems, with well‐documented impacts on soils, biota and ecological processes. The effects of O3 on individual plants and processes scale up through the ecosystem through effects on carbon, nutrient and hydrologic dynamics. Ozone effects on individual species and their associated microflora and fauna cascade through the ecosystem to the landscape level. Systematic injury surveys demonstrate that foliar injury occurs on sensitive species throughout the globe. However, deleterious impacts on plant carbon, water and nutrient balance can also occur without visible injury. Because sensitivity to O3 may follow coarse physiognomic plant classes (in general, herbaceous crops are more sensitive than deciduous woody plants, grasses and conifers), the task still remains to use stomatal O3 uptake to assess class and species’ sensitivity. Investigations of the radial growth of mature trees, in combination with data from many controlled studies with seedlings, suggest that ambient O3 reduces growth of mature trees in some locations. Models based on tree physiology and forest stand dynamics suggest that modest effects of O3 on growth may accumulate over time, other stresses (prolonged drought, excess nitrogen deposition) may exacerbate the direct effects of O3 on tree growth, and competitive interactions among species may be altered. Ozone exposure over decades may be altering the species composition of forests currently, and as fossil fuel combustion products generate more O3 than deteriorates in the atmosphere, into the future as well.  相似文献   
107.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   
108.
Matthias Albrecht  David Kleijn  Neal M. Williams  Matthias Tschumi  Brett R. Blaauw  Riccardo Bommarco  Alistair J. Campbell  Matteo Dainese  Francis A. Drummond  Martin H. Entling  Dominik Ganser  G. Arjen de Groot  Dave Goulson  Heather Grab  Hannah Hamilton  Felix Herzog  Rufus Isaacs  Katja Jacot  Philippe Jeanneret  Mattias Jonsson  Eva Knop  Claire Kremen  Douglas A. Landis  Gregory M. Loeb  Lorenzo Marini  Megan McKerchar  Lora Morandin  Sonja C. Pfister  Simon G. Potts  Maj Rundlf  Hillary Sardias  Amber Sciligo  Carsten Thies  Teja Tscharntke  Eric Venturini  Eve Veromann  Ines M.G. Vollhardt  Felix Wckers  Kimiora Ward  Andrew Wilby  Megan Woltz  Steve Wratten  Louis Sutter 《Ecology letters》2020,23(10):1488-1498
Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.  相似文献   
109.
Ecological processes in food webs depend on species interactions. By identifying broad‐scaled interaction patterns, important information on species' ecological roles may be revealed. Here, we use the group model to examine how spatial resolution and proximity influence group structure. We examine a data set from the Barents Sea, with food webs described for both the whole region and 25 subregions. We test how the group structure in the networks differ comparing (1) the regional metaweb to subregions and (2) subregion to subregion. We find that more than half the species in the metaweb change groups when compared to subregions. Between subregions, networks with similar group structure are spatially related. Interestingly, although species overlap is important for similarity in group structure, there are notable exceptions. Our results highlight that species ecological roles vary depending on fine‐scaled differences in the patterns of interactions, and that local network characteristics are important to consider.  相似文献   
110.
Awareness of the natural ecological processes provided by organisms that benefit human well‐being has significantly progressed towards the goal of making conservation a mainstream value. Identifying different services and the species that provide them is a vital first step for the management and maintenance of these so‐called ecosystem services. Herein, we specifically address the armadillos, which play key functional roles in terrestrial ecosystems, including as ecosystem engineers, predators, and vectors of invertebrates and nutrients, although these roles have often been overlooked. Armadillos can control pests, disperse seeds, and be effective sentinels of potential disease outbreaks or bioindicators of environmental contaminants. They also supply important material (meat, medicines) and non‐material (learning, inspiration) contributions all over the Americas. We identify key gaps in the understanding of ecosystem services provided by armadillos and areas for future research required to clarify their functional role in terrestrial ecosystems and the services they supply. Such information will produce powerful arguments for armadillo conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号